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Abstract
Clock synchronization is critical for many datacenter applica-
tions such as distributed transactional databases, consistent
snapshots, and network telemetry. As applications have in-
creasing performance requirements and datacenter networks
get into ultra-low latency, we need submicrosecond-level
bound on time-uncertainty to reduce transaction delay and en-
able new network management applications (e.g., measuring
one-way delay for congestion control). The state-of-the-art
clock synchronization solutions focus on improving clock pre-
cision but may incur significant time-uncertainty bound due
to the presence of failures. This significantly affects applica-
tions because in large-scale datacenters, temperature-related,
link, device, and domain failures are common. We present
Sundial, a fault-tolerant clock synchronization system for dat-
acenters that achieves ∼100ns time-uncertainty bound under
various types of failures. Sundial provides fast failure detec-
tion based on frequent synchronization messages in hardware.
Sundial enables fast failure recovery using a novel graph-
based algorithm to precompute a backup plan that is generic
to failures. Through experiments in a >500-machine testbed
and large-scale simulations, we show that Sundial can achieve
∼100ns time-uncertainty bound under different types of fail-
ures, which is more than two orders of magnitude lower than
the state-of-the-art solutions. We also demonstrate the ben-
efit of Sundial on applications such as Spanner and Swift
congestion control.

1 Introduction
Clock synchronization is increasingly important for datacen-
ter applications such as distributed transactional databases [12,
32], consistent snapshots [11, 16], network telemetry, conges-
tion control, and distributed logging.

One key metric for clock synchronization is the time-
uncertainty bound for each node, denoted as ε in this paper,
which bounds the difference between local clock and other
clocks. This concept is used by TrueTime in Spanner [12].
Spanner leverages TrueTime to guarantee the correctness
properties around concurrency control and provide consis-

tency in distributed databases. Another example is consis-
tent snapshots, which are commonly used for debugging or
handling failures in distributed systems. To ensure consis-
tency among snapshots, each node needs to wait for its time-
uncertainty bound (ε) before recording the states.

Traditional clock synchronization techniques provide ε at
the millisecond level (e.g., <10ms in TrueTime [12]), which is
no longer effective for modern datacenter applications with in-
creasing performance requirements and ultra low latency dat-
acenter networks (e.g., with latency around 5µs [25]). Today’s
applications can benefit significantly from submicrosecond-
level ε. For example, FaRMv2 [32], an RDMA-based trans-
actional system, observes the median transaction delay can
drop by 25% if we improve ε from ∼20µs to 100ns. Cock-
roachDB [3] can significantly reduce the retry rate when ε

drops from 1ms to 100ns based on an experiment in [13].
Providing submicrosecond-level ε can also enable new

network management applications. For example, with
submicrosecond-level clock differences across devices, we
can measure one-way delay, locate packet losses, and identify
per-hop latency bursts [23, 24]. It also enables synchronized
network snapshots [37] which are useful for identifying RTT-
scale network imbalance and collect global forwarding state.
Accurate one-way delay provides a better congestion signal
to delay-based congestion control [17, 29] to differentiate
between forward and reverse path congestion.

There are several systems that achieve submicrosecond-
level clock precision. The state-of-the-art commercial so-
lution on precise clock synchronization is Precision Time
Protocol (PTP) [4]. PTP is widely available in switches and
NICs [6,8,9]. Each switch or NIC has a hardware clock driven
by an oscillator, generates timestamped synchronization mes-
sages in software, and sends them over a spanning tree to
synchronize with other nodes. Normally, oscillator drifts stay
within ±100µs per second and the devices synchronize every
15ms to 2 seconds [4, 8]. A recent proposal DTP [21] sends
messages in the physical layer every few microseconds and
can also achieve ∼100ns precision. Huygens [13] is a clock-
synchronization system built in software that achieves <100ns



precision by using Support Vector Machines to accurately es-
timate one-way propagation delays.

While these works provide high clock precision under nor-
mal cases, the time-uncertainty bound ε grows to 10-100s of
µs as datacenters are subject to a variety of failures. In large-
scale datacenters, there are common temperature-related fail-
ures which affect oscillator drifts. There are also frequent link,
device, and domain failures (i.e., a domain of links and de-
vices that fail together) that affect the synchronization across
nodes (see §3).

In this paper, we present Sundial, which provides
∼100ns time-uncertainty bound (ε) under failures including
temperature-related, link, device and domain failures and re-
ports ε to applications – two orders of magnitude better than
current designs. Even in cases of simultaneous failures across
domains, Sundial provides correct ε to applications. Sundial
achieves this with a hardware-software codesign that enables
fast failure detection and recovery:
Fast failure detection based on frequent synchronous
messaging on commodity hardware: Sundial exchanges
messages every ∼100µs in hardware without changing the
physical layer. The frequent message exchange enables fast
failure detection and recovery, and frequent reduction of ε.
To ensure fast failure detection for remote nodes in the span-
ning tree, Sundial introduces synchronous messaging which
ensures that each node sends a new message only when it
receives a message from the upstream.
Fast failure recovery with precomputed backup plan that
is generic to all types of failures: To enable fast failure re-
covery, Sundial controller precomputes a backup plan con-
sisting of one backup parent for each node and a backup root,
so that each device can recover locally. The backup plan is
generic to different types of failures (i.e., link, device failures,
root failures, and domain failures) and ensures that after fail-
ure recovery, the devices remain connected without loops. We
introduce a new search algorithm for the backup plan that ex-
tends a variant of edge-disjoint spanning tree algorithm [35]
but with additional constraints such as no-ancestor condition
(the edge in the current tree cannot be a forward edge in the
backup tree) and disjoint-failure-domain condition (no do-
main failure can take down both the parent and the backup
parent for any device). Our algorithm only takes 148ms on
average to run on an example Jupiter [33] topology with 88K
nodes.

We evaluate Sundial with experiments in a >500 machine
prototype implementation and via large-scale simulations.
Sundial achieves ∼100ns time-uncertainty bound both under
normal time and under different types of failures, which is
more than two orders of magnitude lower than the state-of-
the-art solutions such as PTP [4], Huygens [13], and DTP [21].
Sundial reduces the commit-wait latency of Spanner [12] run-
ning inside a datacenter by 3-4x, and improves the throughput
of Swift congestion control [17] by 1.6x under reverse-path
congestion.

2 Need for Tight Time-uncertainty Bound
A clock synchronization system for datacenters need not only
a current value of time but also time-uncertainty bound that is
used by applications for correctness as well as performance.
We describe several datacenter applications and how tight
time-uncertainty bound benefits them below.
Distributed Transactional Databases: Spanner [12],
FaRMv2 [32] and CockroachDB [3] are some examples of
distributed databases deployed at scale in production that di-
rectly use time-uncertainty bound to guarantee consistency –
transactions wait out time-uncertainty bound before commit-
ting a transaction. Spanner is the first to use ε in production
transactional systems. While it is globally distributed, its idea
of using ε is adopted in many intra-datacenter systems such as
FaRMv2 [32]. However, inside datacenters, with recent soft-
ware and hardware improvements such as RDMA, NVMe,
and in-memory storage, transaction latencies are going to-
wards microsecond level. For example, FaRMv2 is built atop
RDMA for datacenters and has ε of ∼20µs which already
accounts for 25% of median transaction latency! Tight ε im-
proves the performance of these systems both in terms of
latency and throughput.
Consistent snapshots: Consistent snapshots [11, 16] is an-
other important application for datacenters for debugging,
failure handling, and recovery for cloud VMs. The consis-
tency across servers can be guaranteed by waiting out ε to
ensure the scheduled snapshot time is passed. With recent
software and hardware improvements, ε becomes a perfor-
mance bottleneck at a similar level as in distributed databases,
limiting the frequency of taking snapshots.
Network telemetry: As network latency reduces to the or-
der of a few microseconds, millisecond-level ε is too coarse-
grained. Tight ε enables a wide range of fine-grained network
telemetry. For example, per-link latency or packet losses can
be measured by comparing the timestamps or counters at both
ends of a link read at the same time [23, 24, 40]. Synchro-
nized network snapshots at RTT scale can be enabled with
tight time-uncertainty bound, and can be used for various
telemetry needs such as measuring traffic imbalance across
different links/paths in the dataceter [37].To achieve these,
switch clocks also need to be synchronized.
One-way delay (OWD): Synchronized clocks enable the
measurement of one-way delays. Small ε provides a tighter
bound on the error in the measurement especially under fail-
ures. Measurement of OWD is useful for many applications in-
cluding telemetry and congestion control. For example, OWD
differentiates between forward and reverse-path congestion
improving performance of delay-based congestion control
algorithms such as Swift [17] (§6.3).
Distributed logging: A key challenge for debugging large-
scale distributed systems is to analyze logs collected from
different devices with clock differences. Tighter ε enables
more useful analysis and opens up more distributed debug-
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Figure 1: Message exchanges to synchronize B to A.

ging opportunities. Our ∼100ns ε is about the same as L3
cache miss time, so it can help order all log messages in a
datacenter. We note that this class of applications has an addi-
tional requirement in that the synchronized clocks follow a
master clock that reflects the physical time of day (§4.5).

3 Failures in Clock Synchronization System
In this section, we discuss the different failure scenarios af-
fecting a clock synchronization system and their respective
impacts. We start with a brief background on clock synchro-
nization to aid the discussion.

3.1 Background on Clock Synchronization
The clock is driven by a crystal oscillator. Every device
has a clock, whose value is incremented on every tick of a
hardware oscillator. Different oscillators, even of the same
type, have slightly different frequencies. The frequency of
an oscillator may change over time, due to factors such as
temperature changes, voltage changes, or aging resulting in
clocks to drift away over time. As an example, oscillators
in production networks can have a frequency variation of
±100 ppm (parts per million) [7], meaning that the oscillator
can drift within the range of ±100µs per second compared
to running at the nominal frequency. More stable oscillators
(e.g., atomic clocks based on Cesium, Hydrogen or Rubidium
particles or oven-controlled oscillators) are too expensive to
deploy on every device in production.
Clocks exchange messages with each other for synchro-
nization. To ensure that clocks remain close to each other,
we need to periodically adjust the clocks to account for poten-
tial drift. Figure 1 shows an example where clock B synchro-
nizes to A. A sends a synchronization message (abbreviated
as sync-message in this paper) with a timestamp T A

1 based
on A’s clock, and B records the receiving time (timestamped
by B) of the sync-message T B

1 . Now, if B knows the message
delay dAB from A to B, B can compute the offset between A
and B as T A

1 +dAB−T B
1 . To know dAB, B sends another mes-

sage to A to measure RTT, and use half of RTT to estimate:
dAB = (T A

2 −T A
1 − (T B

2 −T B
1 ))/2. B uses offset to adjust its

clock. A periodically sends out these sync-messages at an in-
terval denoted by sync-interval. The accuracy of dAB depends
on multiple factors and we discuss them below.
A network of clocks synchronize using a synchronization
structure. A common way to do this is to construct a span-
ning tree over which sync-messages are sent, e.g., PTP which
is the most widely available system for datacenter clock syn-
chronization uses a spanning tree with one device serving as
the root (called master or grandmaster). The model for best
case synchronization is that each device’s parent is one of its
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Figure 2: Benefit of synchronization between neighbors: symmetric
forward and backward paths, and no noises from queuing delay.

direct neighbors in the physical network and sync-messages
flow periodically from the root across the spanning tree.1 This
has two advantages. First, it allows switch clocks to also be
synchronized enabling additional telemetry applications (§2).
Second, it significantly improves the measurement of dAB as
shown in Figure 2. Noises in estimation of dAB by halving the
RTT can arise due to (1) asymmetric propagation delays of
the forward path and the reverse path, and (2) queuing delays.
For direct neighbors in the physical network, propagation de-
lay asymmetry is near zero, and there is no queuing delay2.
There are proposals that do not use a spanning tree as the syn-
chronization structure but either they don’t reflect the physical
time [21] (§4.5) or they cannot provide submicrosecond-level
precision [12, 27, 28] (§7).
Time-uncertainty bound. As clocks can drift apart over
time, time-uncertainty bound (ε) can be calculated as:

ε = εbase +(now−Tlast_sync)×max_drift_rate (1)
ε of a clock exhibits a sawtooth function. Tlast_sync is the last
time when the clock is synchronized to the root (not just its di-
rect parent), now−Tlast_sync increases with time and goes back
to zero after synchronization to the root, and max_drift_rate
is a constant representing the maximum possible drift rate be-
tween the local clock and the root’s clock. The εbase is a small
constant (a few nanoseconds) that accounts for other noises
(e.g., timestamping errors, bidirectional delay asymmetry of
physical links, etc.).

We will show that in the face of failures in production en-
vironments, max_drift_rate should be conservatively derived
(§3.2.1), and now−Tlast_sync can be large (§3.2.2).

3.2 Impact of Failures on ε

We classify failures affecting clock synchronization into three
categories and study their impact on ε – failures that induce
large frequency variations and need a conservative setting
of max_drift_rate, connectivity failures that affect Tlast_sync,
and incorrect behaviors due to broken clocks and message
corruption that need to be detected and addressed.
3.2.1 Failures that Induce Large Frequency Variations
An oscillator’s frequency can incur a large variation in the
event of sudden temperature or voltage fluctuation. Cooling
failures are common and can affect thousands of machines.

1Note that PTP doesn’t require this to be the case.
2While the devices may have local queues, the timestamp is marked at

dequeue/egress time and is not subject to local queuing delay.



In an cooling incident that occurred in production recently, it
resulted in errors related to clock synchronization in a large
fraction of machines (and not just the ones affected by the
failure). The temperature variation resulted in oscillator fre-
quency variation to exceed max_drift_rate and the operator
had to shut down many machines.3 Thus, the max_drift_rate
needs to be set very conservatively (e.g., 200ppm in True-
Time [12]) to tolerate frequency variations under a wide range
of temperature (e.g., up to 85 °C) even though in normal cases,
temperature variations occur slowly [13]. This entails that
in order to keep ε small, we need to reduce now−Tlast_sync
through frequent messaging – ε of 100ns with max_drift_rate
of 200ppm needs sync-interval to be <500µs. Software cost
of reducing sync-interval to such low values is high – PTP
takes one core to process thousands of sync-messages and
associated computations per second [1], and Huygens con-
sumes 0.44% CPU for a sync-interval of 2s (which grows
proportionally as the interval is reduced). We need hardware
support for efficiency (§4.1).
3.2.2 Connectivity Failures
Failures that break the connectivity of the spanning tree also
affect ε. For example, if a device or a link in the spanning tree
fails, the whole subtree under this device or link loses connec-
tivity to the root4, until a new spanning tree is reconfigured
by the SDN controller. ε grows proportionally to the time it
takes for recovery – if it takes 100 ms, ε grows to more than
20µs. Even a distributed spanning tree protocol supported by
PTP (best master clock algorithm) is slow to converge.

What is worse, is that the inflation of ε is not only for a
device affected by the failure at a given time; instead, almost
all devices have to report high ε, all the time and not only
during the failure duration. This is because a device cannot
distinguish whether it is affected by a failure or not. Consider
a 3-node setup as depicted in Figure 3 with A as the root of
the spanning tree and B and C as A’s child and grandchild
respectively. When A fails, B detects the failure but C con-
tinues synchronizing to B without noticing the failure. This
means at any time, there is no way for C to tell if it is in-sync
or not, no matter if there is an actual failure or not and thus,
it has to always report large ε (i.e., > 20µs) even during nor-
mal periods.5 Another way to look at this is in the context of
Equation 1, C cannot set Tlast_sync to the time it receives the
last sync-message from its parent Tlast_msg; instead, for cor-
rectness, C has to always set Tlast_sync = Tlast_msg−Trecovery,
where Trecovery is the maximum time to recover from any fail-
ure that may break its connectivity to the root. All non-direct
descendants of the root are affected by this.

3Normally, after a cooling system failure, operators let machines continue
running for 10s of minutes before the recovery of cooling system or a grad-
ual shutdown of machines, because this is usually safe and a sudden total
shutdown should be avoided as much as possible.

4PTP is configured on a per-port basis (not per-device), so sync-message
cannot bypass the failed link or the link associated with the failed device.

5Without changing the PTP standard, B cannot explicitly communicate to
C about the failure.
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Figure 3: Challenge of determining Tlast_sync. Node C cannot deter-
mine if it is synchronized to the root or not, so C has to always set
Tlast_sync conservatively early to account for possible down time.

Figure 4: Number of link down events per second in a 1000-machine
cluster during a near two-minute window of a failure incident.

There are many possible causes of connectivity failures:
besides the common link or switch down, there are incidents
that can take down massive (10s to 100s) devices or links,
such as failures related to patch panels, link bundles, power
domains, or human operations [38, 39]. Figure 4 shows the
time series of link down events in a 1000-machine cluster
during a failure incident. The suspected cause was a software
bug related to a patch panel but its impact on device/link
failures lasted across nearly two minutes – a total of 133 links
go down. Thus, in order to provide small ε, the system must
recover from connectivity failures quickly.

3.2.3 Broken Clocks and Message Corruption
Clocks may break and stop functioning well resulting in actual
drift rate to exceed max_drift_rate. While this is rare relative
to more severe hardware problems – statistics from production
show that broken CPUs are 6 times more likely than broken
clocks [12] – they need to be taken care of to provide correct
ε to applications. Similarly, sync-message corruption may
garble the associated timestamp and affect correctness of
reported ε. A fault-tolerant clock synchronization system must
detect and address such anomalies.

4 Sundial Design and Implementation
Motivated by the discussion above, we identify two key re-
quirements to build a fault-tolerant clock synchronization sys-
tem for datacenters that achieves performant time-uncertainty
bounds. First is a small sync-interval (§3.2.1) – this is well
served with a hardware implementation to avoid high CPU
overhead of receiving and transmitting synchronization mes-
sages in software. Second is fast failure recovery so that ε

continues to be small even when failures happen (§3.2.2).
The challenge here is that recovering solely via a centralized
controller is slow for our target ε requirements. Instead, as
we show later, we can recover from most failures locally by
adding redundancy to the synchronization graph, where in
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addition to the primary spanning tree, each device maintains a
backup parent, such that it can transition to the backup parent
locally upon detecting a failure. As shown in Figure 5, this
takes the round trip time to the controller and the computation
time out of the critical path of failure handling.

Thus, Sundial uses a hardware-software codesign. Figure 6
depicts Sundial’s framework, which has three main compo-
nents. Sundial implement the most essential functions of ex-
changing synchronization messages and detecting failures in
hardware such that it can synchronize frequently and quickly
detect failures. Sundial relies on software components to take
action once a failure is detected, by invoking a failure handler
in software which reconfigures the hardware to transition to
the backup parent pre-programmed by a centralized controller
(also in software). We use the topology in Figure 7(a) as a
toy example to aid with the discussion in this section with
Figure 7(b) as an example spanning tree.

4.1 Sundial Hardware Design
Sundial’s hardware has three main components. It implements
frequent transmission of sync-messages in a synchronous
fashion, i.e., sync-messages are sent downstream only upon
their receipt. The hardware is also responsible for detecting
failures and triggering software handlers for quick recovery.
Finally, the hardware maintains the current value of ε. We
detail out these components below.
4.1.1 Frequent Synchronous Messaging
Sundial’s hardware supports frequent message sending to
prevent clocks from drifting apart significantly. On the root,
this is done via a hardware timer maintaining a counter that
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Figure 7: Failure cases in a k=4 FatTree. (a) is the raw FatTree. To
show the spanning tree clearer, we draw an equivalent topology in
(b) and a spanning tree in it. An arrow is from a parent to its child,
and a dashed line indicates an edge not used in the spanning tree. (c)
shows one way of adjusting the spanning tree when the link between
4 and 8 fails; not only the directly impacted nodes (node 8), but also
other nodes (node 5) have to change parent. (d) shows one way of
adjustment when node 4 fails; the way node 5 changes its parent (to
node 3) is different from the case in (c) (change to node 9).

increments on every oscillator cycle, and triggers message
transmission when the time since last transmission exceeds
the configured sync-interval. We configure sync-interval on
the root device to be around 100µs. The sync-messages are
sent at the highest priority, but the network overhead remains
extremely small – a 100-byte packet every 100µs only con-
sumes less than 0.01% bandwidth and adds at most 10ns
queuing delay for other traffic.

For non-root devices, a challenge is that an upstream failure
can affect all devices in that subtree. Consider the case in Fig-
ure 7(c), if link 4-to-8 goes down, 8 needs to switch to 5 as its
parent, which needs 5 to change its parent as well. A potential
solution is explicit notification of failures to other devices, but
this has two issues – not only can this be unreliable (since the
notification messages may get dropped), it also adds complex-
ity to the hardware. Instead, we solve this via synchronous
messaging where message transmission is triggered only upon
receipt of a message from upstream. In this way, an upstream
failure implies that messages stop propagating downstream,
and devices can take corrective actions.
4.1.2 Fast Failure Detection
Sundial’s hardware uses a timeout to detect if it stops receiv-
ing messages indicating an upstream failure. The timeout is
set to span multiple sync-intervals, such that occasional mes-
sage drop or corruption doesn’t trigger it. It’s implemented
using a counter that is incremented on every oscillator cycle,
and cleared on receiving a sync-message – once it’s exceeded,
the hardware issues an interrupt to the software.

To detect broken clocks and message corruption, each de-



vice verifies the incoming timestamp (adjusted for link delay).
If the adjusted value lies outside the local ε, the message is
marked invalid and doesn’t trigger an update and message
transmissions. A broken clock can cause continuous invalid
messages and thus, we don’t reset the timeout counter on their
receipt. Once a broken clock is detected, the failure handler
in device software is triggered to handle it (§4.2.2).
4.1.3 Time-uncertainty Bound Calculation
The hardware maintains ε according to Equation 1. In our
implementation, we configure max_drift_rate = 200ppm and
εbase = 5ns×depth where depth is the distance of the device
from the root in the tree.

Tlast_sync is updated when receiving a sync-message. In
PTP, Tlast_sync should be set to earlier than Tlast_msg. Thanks
to synchronous messaging, Sundial sets it to Tlast_msg since a
device stops receiving messages on an upstream failure. This
lowers now−Tlast_sync which in turn lowers ε.

4.2 Sundial Software Design
There are two main components to round out the fault-tolerant
design of Sundial – a centralized SDN controller that pre-
calculates backup plans and programs them on the devices
and a failure handler in device software that quickly moves to
the backup when a failure is detected by the hardware.
4.2.1 Centralized Controller
The centralized controller in Sundial is responsible for com-
puting the primary spanning tree along with the backup plan
based on the current topology and configures the devices ac-
cordingly. Comparing Figure 7(c) and 7(d), we see that not
all neighbors of a node (e.g., node 5 in the figure) can be the
backup parent under different failures. Sundial uses a search
algorithm (detailed below) to compute a fault-tolerant backup
plan that is generic to link, non-root node, root node, and do-
main failures (which can take down multiple links or devices).
We break down this requirement into 5 properties.
Properties of a fault-tolerant backup plan. We briefly
introduce the terminology used. The primary spanning
tree is one that is currently being used to propagate sync-
messages. The backup plan consists of a backup-parent for
each node/device and a backup root. Terms like parent, edges,
paths, and ancestors apply separately to the primary and the
backup graph (graph formed by the edges in the backup plan).
(1) No-loop condition: For any primary subtree, the backup
edges of nodes in the subtree do not form a loop. This is a
necessary and sufficient condition to be generic to any single
link failure. The necessity is obvious: if there is a loop, the
nodes in the loop do not synchronize to the root after a failure.
We prove the sufficiency by induction as follows. Suppose a
k-node subtree is affected by a link failure, and the k backup
edges do not form a loop (Figure 8); the nodes other than the
k nodes are unaffected and still form a tree (called the main
tree). At least one of the k nodes’ (say, C) parent is in the
main tree; otherwise, all k nodes’ parents are in the k nodes,
which must form a loop, contradicting the no-loop condition.

A link down cuts off a 
sub-tree of k nodes. 

Main tree

k nodes have k backup 
parents. If they do not form 
a loop, at least one node’s 
backup parent is outside.

Figure 8: No-loop condition. It is sufficient to guarantee connectiv-
ity after any link failure.

We can now expand the main tree to include C since C is
connected to the main tree via its backup edge. We can then
iteratively add the remaining k−1 nodes to the main tree.
(2) No-ancestor condition: The backup parent of a node is
not its ancestor. This and property (1) together ensure that the
backup plan is generic to any non-root node failure. Other-
wise, if that ancestor fails, that node has no backup parent.
(3) Reachability condition: The backup root must be able
to reach all nodes through backup paths. This is necessary
and sufficient to be generic to the root failure. When the root
fails, all nodes change to their backup parents, and the backup
root will become the new root. To synchronize all nodes, they
must be reachable from the backup root.
(4) Disjoint-failure-domain condition: Domain failures
present a unique challenge, because they may take down mul-
tiple devices or links. If a domain failure breaks the connec-
tivity of a device s to the root, s will turn to its backup parent;
but if the domain failure also takes down its backup parent,
then s cannot recover its connectivity.

The following property solves this problem: for any node s,
there shouldn’t be a single domain failure that both breaks s’s
connectivity to the root and takes down the backup parent or
backup edge, unless that failure also takes down the node s.

Formally, if the set of failure domains that can break s’s
connectivity to the root6 is Dp, the set of failure domains that
can take down s’s backup parent or backup edge is Db, and
the set of failure domains that s belongs to is Ds, we should
have Dp∩Db ⊆ Ds.

The necessity is obvious. We present the intuition behind
the proof of the sufficiency. If a domain failure happens, s
has two possibilities: either s’s connectivity is unaffected, or
s connects to its backup parent b. If it is the latter, then the
questions is whether b is connected to the root, which also has
two possibilities. Doing this recursively, s keeps connecting
to more nodes along a backup path. The backup path will
not go indefinitely due to the no-loop condition, so it finally
reaches either an unaffected node or the root.
(5) Root failure detection: Upon root failure, the backup root
needs to collect sufficient information to elect itself. Figure 9
describes the approach – the backup root is chosen amongst
root’s children so it has one source of information by itself.

To get information from additional sources, we set up the
backup graph to have a backup path from the subtree of an-
other child of the primary root (i.e., the backup path from node

6Any device or link failure along the primary path from the root to s can
break s’s connectivity.
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Figure 9: Root failure detection. Under any non-root failure, the
backup root continues receiving messages, which can be used to
distinguish other failures.

2 to 1 in Figure 9). In this way, if the link between the primary
root and the backup root fails (link from 0 to 1), the backup
root knows the primary root is still alive because it contin-
ues receiving sync-messages that come through the backup
path. We can continue this backup path to cross more subtrees
of children of the primary root to get additional sources of
information (e.g., crossing node 3 and 4 in Figure 9).

In this way, as long as the root is alive, the backup root
continues receiving sync-messages. Only when the root fails,
the backup root stops receiving messages. So the backup root
can detect the primary root failure using a second timeout of
not receiving messages after it first turns to its backup parent,
and it elects itself as the new root after the second timeout.
Putting all 5 properties together. Only non-root nodes have
backup parents, so there are N-1 nodes and N-1 edges in the
backup graph (N is the total number of nodes), so there must
be exactly one loop7 in the backup graph, and each node in
the loop has a backup subtree (can be a single node) under it
(Figure 10). With property (3), the backup root must be in the
loop, so that the backup root can reach all nodes. The loop
should cross multiple primary subtrees of root’s children, so it
meets both property (1) and property (5) (it delivers multiple
sources of primary root’s information to the backup root).
Lastly, the backup graph should meet properties (2) and (4).

Figure 11(a) shows an example of primary tree and backup
graph for the topology in Figure 7. Note that the computed pri-
mary tree is different to support a backup graph. The backup
graph has a loop (between node 4 and 8) with the backup root
4 on it; the loop crosses the two primary subtrees of root’s
children (node 8 is under node 6’s primary subtree). To show
how property (4) handles domain failures, we add a failure
domain that includes both node 11 and 3 (primary and backup
parents of node 7 in Figure 11(a)). Now in the new backup
graph (Figure 11(b)), to meet property (4), node 7’s backup
parent becomes node 2, so that even if both node 3 and 11 go
down, node 7 (and other nodes) is still connected.

We want to highlight how the system recovers when the
root fails. All backup edges get enabled forming a loop, but
no sync-messages flow at this time. At the second timeout,
the backup root elects itself and ignores incoming messages,
effectively disabling the edge towards it (Figure 10). In this
way, sync-messages do not loop.

7A graph with equal numbers of nodes and edges has at least one loop. In
addition, if there is more than one loop, then the graph is not fully connected.

Backup root ignores this edge 
after the second timeout

Backup root

Backup edge
Backup sub-tree

Figure 10: Backup Graph. There is exactly one loop with the backup
root in it. Each node in the loop is the root of a subtree.

0
4 6

8 9 1 10 11

5 7

2 3

Primary edge

Backup edge

0
4 6

8 9 1 10 11

5 7

2 3
(a) (b)

Backup rootBackup root

Same 
domain

Figure 11: (a) A primary tree and a backup graph that meet all
properties in Figure 7. But if node 3 and 11 are in the same domain,
node 7 cannot have them as its primary and backup parents, so its
backup parent becomes node 2 in (b).

Algorithm for computing backup plan. Sundial uses a
search algorithm to calculate the backup plan which includes
a primary tree and the backup graph. Note that not every pri-
mary tree has a valid backup graph. Thus, the goal is to search
for a primary tree and its backup graph together. The search
heuristic is based on the score of a primary tree – the maxi-
mum number of edges in the backup graphs it supports. The
corresponding backup graphs are called the largest backup
graphs (of the primary tree).

Algorithm 1 describes the algorithm. pending is the set
of primary trees that are pending to be checked, initialized
with a simple BFS (Line 1). After initialization (Line 2), we
start the SEARCH function (Line 3) that will return a pair of
primary tree and backup graph. In SEARCH, each time, we
pick the primary tree p with the highest score (Line 6) – the
most promising one – and find the largest backup graphs for it
(Line 7). If some backup graph is complete, i.e., every device
(including the backup root) has a backup parent, the search
successfully returns (Line 8 - 9). Otherwise, we update the
best score so far (Line 10), and mutate p (Line 11) to get a
new set of primary trees in pending and iterate.

In MUTATE, for each backup graph b (Line 14), we try to
expand b to include edge <x, y> (Line 15). Since <x, y> is not
usable in backup graphs of p8 (i.e., USABLEINBACKUP(<x,
y>, p) is false), we IMPROVE p to make <x, y> usable (Line
16). We then add each improved version p′ to pending if not
already tested (Line 19). After all the mutations, p is removed
from pending (Line 22). We will discuss the optimizations in
Line 20 - 21 later.

FINDLARGESTBACKUP and IMPROVE are the key func-
tions. FINDLARGESTBACKUP conforms to the 5 properties.
Properties (2) and (4) decide what edges can be used in
backup graphs given a primary tree p, as expressed in function

8<x, y> is not usable for sure; otherwise b is not the largest because it can
readily include <x, y>.



Algorithm 1 Searching for a primary tree and a backup graph.

1: pending = {BFS(prim_root)};
2: tested = /0; best_score = 0;
3: return SEARCH();
4: function SEARCH

5: while pending is not empty do
6: p = pending.get_best(); tested∪={p};
7: backup_set = FINDLARGESTBACKUP(p);
8: if ∃b ∈ backup_set|b is complete then
9: return p, b;

10: best_score=max{best_score,calc_score(p)};
11: MUTATE(p, backup_set);
12: return NotFound;
13: procedure MUTATE(p, backup_set)
14: for b in backup_set do
15: for each <x, y> | x ∈ b,y /∈ b do
16: new_prim_set=IMPROVE(p, <x, y>, b);
17: for p′ in new_prim_set do
18: if p′ /∈ tested then
19: pending∪={p′};
20: if calc_score(p′)>best_score then
21: return ;
22: pending-=p;

Algorithm 2 Check if <x, y> is usable in backup graphs of p.

1: function USABLEINBACKUP(<x, y>, p)
2: return (x is not y’s ancestor in p) && (y’s ancestor in p and

x meet disjoint-failure-domain condition);

USABLEINBACKUP (Algorithm 2). Properties (1), (3), and (5)
decide how the backup graph should look like. We can simply
use BFS starting from the backup root (property (3)) to find
the tree (property (1)) that is largest, and then enumerate the
backup parent for the backup root and see if it forms a loop
that meets property (5). IMPROVE’s goal is to change p to p′

so that <x, y> becomes usable (i.e., USABLEINBACKUP(<x,
y>, p′) is true). It finds the set of p′ that meets this goal.

As long as FINDLARGESTBACKUP and IMPROVE are ex-
haustive, the search is exhaustive – it will find a solution if one
exists. The search process is similar to an algorithm that finds
two edge-disjoint spanning trees [35], because our backup
graph is composed of a more restricted spanning tree that is
edge-disjoint with the primary tree, and an extra edge towards
the backup root. The problem seems to be NP-hard although
we don’t have a proof yet.

In practice, our implementation of SEARCH is extremely
fast – it only takes 148ms on average in a simulated Jupiter
topology with 88,064 nodes [33] leveraging the following
three strategies. (i) In Line 20 - 21 of Algorithm 1, we prune
enumerations as per Line 14 - 15 as long as we find a p′

that is heuristically better than any primary trees so far (in-
cluding p). This significantly speeds up the search, as we
can immediately make progress – after return (Line 21), the
search immediately starts a new iteration at Line 6 based on
p′, which is heuristically better than continuing mutating p.
Note this strategy does not miss any primary trees, as the

Algorithm 3 Finding the largest backup graph of p.

1: function FINDLARGESTBACKUP(p)
2: b=BFS_ForBackup(backup_root, p); . BFS uses

USABLEINBACKUP to avoid unusable edges.
3: Find <y, backup_root> where y ∈ b && USABLEIN-

BACKUP(<y, backup_root>, p) && the loop crosses multiple
subtrees of prim_root in p; Add <y, backup_root> to b;

4: return {b};

Algorithm 4 Changing p to make <x, y> usable and keep as many
b’s edges usable as possible.

1: function IMPROVE(p, <x, y>, b)
2: if x is y’s ancestor in p then
3: for each edge <u, v> on the path x y in p do
4: new_prim_set∪= RECONNECT(v, x, p, b);
5: if <x, y> fails disjoint-failure-domain condition then
6: new_prim_set∪= RECONNECT(y, x, p, b);
7: return new_prim_set;
8: function RECONNECT(v, x, p, b)
9: BFS from v along reverse edges, and stops at nodes outside

x-subtree in p, while keeping as many b’s edges usable as pos-
sible. It gives a set of paths S={w v|w is outside x-subtree in
p}

10: for path in S do
11: For each <i, j> ∈ path set j’s parent to i in p to get p′;
12: new_prim_set∪= {p′};
13: return new_prim_set;

original p remains in pending. (ii) FINDLARGESTBACKUP
only returns one of the largest backup graphs, rather than all
of them. This is sufficient as all largest backup graphs for a
primary tree connect the same set of nodes and we use this
strategy in Algorithm 3. (iii) IMPROVE just returns the set of
p′ that keeps the largest number of b’s edges usable. This tries
to keep as many useful fruits of past iterations as possible, so
it speeds up the search. Algorithm 4 is based on this strategy.

These three strategies significantly reduce the computation
time per iteration (Line 6 - 11). While the latter two strate-
gies make the search non-exhaustive, all practical datacenter
topologies have high redundancy such that in our experiments,
we quickly found a backup-plan even after injecting 50 succes-
sive failures. Also owing to the high redundancy in practical
topologies, the number of iterations is small since the initial p
already has a very high score, only a few hundreds below the
total number of nodes. Finally, another consequence of high
redundancy is that in practice, the search iterates with almost
monotonically increasing scores 9, sometimes with jumps of
tens or hundreds, reaching the final backup plan in tens of
iterations on average.

Mutation for meeting property (5) follows a similar process
as MUTATE. We omit the details due to limited space.
Calculating εbase,backup. When a node turns to its backup par-
ent, its depth may change, so we also precompute εbase,backup

9IMPROVE can easily find paths while keeping all b’s edges usable, be-
cause of the high redundancy.
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Figure 12: Node A’s depth is dependent on the failure. If node 1
fails, A’s depth is 3 (A, B, 2, root). But if node 2 fails, A’s depth is 4
(A, B, 4, 3, root).
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Figure 13: A has 6 possible paths to the root, of 3 types. (1) Backup
path: if the root is down, the backup path (A, 1, 2, 3) is in effect. (2)
Primary path: when A is unaffected by failures. (3) Mixed path:
when failures affect A and some other nodes on the loop, A connects
to the root first along the loop for one or more hops, and then along
the primary path (e.g., A, 1, 2, ..., root). There are 4 possible mixed
paths, starting the primary paths from respective node 1, 2, 3, and 4.

to which a device set εbase upon timeout. The exact depth is
failure-dependent as shown in Figure 12.

So we calculate the maximum possible depth for each node
after any failures. A naive approach is to enumerate all pos-
sible combinations of failures, which can be slow. Instead,
Sundial uses a simple dynamic-programming (DP) based
scheme. If a node s turns to its backup parent b, we calculate
s’s maximum possible depth s.depthbackup:

s.depthbackup = 1+max(b.depthprimary,b.depthbackup)

where the max function considers two possible cases: b is
unaffected by failures (b.depthprimary denotes b’s depth in the
primary tree, a deterministic value), or affected by failures.
depthbackup can be calculated top-down.

DP works for all nodes except the nodes on the loop in the
backup graph, whose DP calculations inter-depend. But we
can easily calculate their maximum possible depths. On an
L-node loop, for each node we enumerate all L+1 possible
ways it connects to the root (Figure 13). So the overall time
complexity is O((N−L)+L(L+1)) for a total of N nodes.
4.2.2 Failure Handler in the Device Software
A daemon running in firmware serves as the failure handler
and responds to interrupts generated by the hardware once it
detects a failure – the hardware is reconfigured to move to
the backup parent based on the backup plan and set εbase to
εbase,backup. For the backup root, if an interrupt is triggered,
the failure handler also continues to monitor incoming sync-
messages for the second timeout. At the second timeout, the
device sets itself as the primary root.
Handling broken clocks. If a clock is broken [12], it can
drift away faster than max_drift_rate. In Sundial, we detect
such clocks in two steps: (1) detect the existence of a broken
clock when receiving an invalid message, and (2) confirm
which one is broken. Figure 14 illustrates the process. As
such, a broken clock is isolated without affecting other clocks.

The failure handler is triggered by a hardware interrupt
upon receiving an invalid message to handle broken clocks.

(1) Invalid message: 
turn to backup parent

(2) Invalid message again: 
evict myself

(1) Invalid message: 
turn to backup parent (2) Valid message

Own clock is broken

Parent’s clock is broken

Broken clock

Normal clock

Primary edge

Backup edge

Figure 14: Handling a broken clock in two steps. If a node’s own
clock is broken, the messages from both its primary and backup
parents are marked invalid by itself (the timestamp is outside local
ε), so it evicts itself. If a node’s parent’s clock is broken, after receiv-
ing an invalid message it turns to its backup parent, and continues
synchronization thereafter.

For the node with a broken clock, it evicts itself (no longer
participates in synchronization). For the node whose parent
has a broken clock, it turns to its backup parent.

4.3 Implementation
Controller. We implement a module in the network con-
troller. The module registers a function to be called by the
controller framework for failure notifications. When notified,
this module reads the current device/link/port states, and com-
putes a new backup plan. For each device, it compares the
existing configuration and the new configuration, and only re-
configures the devices whose configuration changes, through
RPC. It also configures the TX side of both primary and
backup edges to send sync-messages.
RPC Interface between the Controller and Device
Firmware. The controller and the device firmware com-
municates through RPCs. These RPCs have the following
parameters: backup parent, first timeout, and second timeout
which are used to configure the device hardware.
Firmware. The RPC handler configures the backup parent,
the first timeout, and the second timeout accordingly. The
backup parent and the second timeout are maintained in the
firmware, and the first timeout is maintained in the hardware
registers to enable failure detection in hardware. Only the
backup-root has a non-zero value for the second timeout.

The firmware also registers a handler function for the inter-
rupt triggered by the first-timeout. This function first reconfig-
ures the hardware to accept sync-messages from the backup
parent; then, if the second-timeout is non-zero, it waits for the
timeout to see if it receives any new sync-messages; if not, it
configures the hardware to become the root.

We cannot reveal hardware details due to confidentiality.

4.4 Practical Considerations
Concurrent connectivity failures may happen in practice,
and may not be recovered by the backup plan, which needs
to involve the controller. Sundial maintains the correctness of
ε in this case. The only impact is that ε grows larger before
being recovered by the controller: if it takes 100ms to recover,
ε grows up to 20µs during this time (still ∼100ns during
normal time). The impact is negligible, because compared to
single failures, concurrent failures are already rare, and only a
very small subset of them cannot be recovered by the backup



plan, as discussed below.
The most commonly seen concurrent failures are caused

by a domain failure, which is not an issue because of the
disjoint-failure-domain condition of the backup plan (§4.2.1).

If cross-domain failures happen, whether they impact Sun-
dial depends on their locations and time proximity. For the
nodes whose connectivity is affected, the backup plan is in-
effective only if these failures also take down their backup
parents/edges (special locations) within a short period of time
before the controller recomputes a new backup plan (time
proximity). The chance is very small, because cross-domain
failures are random in locations and time proximity.
Small window of error before evicting a broken clock.
The broken clock detection only happens when messages ar-
rive. There is a small time window between when the failure
actually happens and when the next message arrives, during
which errors could arise. This can be solved via hardware
redundancy – each node physically keeps two clocks, and
each clock query reads the two clocks and checks if they
match (their time-uncertainty ranges overlap). Once a clock
is broken, the next read immediately detects it. Additionally,
Sundial prevents this failure to affect other clocks, because
its children ignore the invalid messages.
False positives. If a device timeouts without a failure, it will
turn to the backup parent. Such false positives are harmless,
except extra controller processing. We do not observe false
positives in our experiments.

4.5 Sundial’s Position in the Design Space
4.5.1 Design Space of Clock Synchronization
At the submicrosecond level, Sundial is the first to support
time-uncertainty bound. We identify three key aspects of the
design that a clock synchronization system must answer.
1. Type of message: There are multiple options, synchro-
nization messages can either be sent directly with special-
ized physical layer (PHY) with zero-overhead messages, or
at higher layers (L2, L3, L4) with increasing bandwidth over-
head and increasing ease of deployment.
2. Noise due to message delay between a pair of clocks.
The message delay in the forward and reverse directions may
be unequal due to queuing or asymmetric paths. There are
three options to deal with such noise: (1) Only synchronize be-
tween neighboring devices, such that there is no noise (§3.1).
(2) Use multiple messages to filter out noise; (3) Tolerate the
noise. Option (1) is the best if all devices (switches and hosts)
can participate. Otherwise, option (2) and (3) face a tradeoff
between noise and overhead.
3. Network-wide synchronization structure: three options.
(1) Master clock distributed through a tree. A master clock
distributes its time to other clocks through a tree. The master
clock can synchronize to the physical time (e.g., via GPS), so
that all clocks reflect the physical time.
(2) Master clock distributed through a mesh. Similar to (1),
but instead of a tree, each clock receives sync-messages from
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Figure 15: Mesh structure: higher ε due to asynchronous messaging.

multiple other clocks, forming a mesh.
(3) No master clock (no physical time). Clocks synchronize
independently with each other without regards to a master
clock. For example, in DTP [21] each clock follows the fastest
of its neighbors. In this option, all clocks converge to a func-
tion (e.g., max() in DTP) of all clocks, which has nothing
to do with the physical time. This option is worse than (1)
and (2) because access to physical time is important for many
datacenter applications.
Tradeoff between (1) and (2). While (2) is clearly more fault-
tolerant, it cannot get ε as low as (1). The reason is that
mesh-based solutions cannot use synchronous messaging. As
shown in Figure 15a, if a clock receives sync-messages from
k other clocks, synchronous messaging inflates the number
of messages by k per hop, causing exponential inflation. So
mesh-based solutions have to use asynchronous messaging,
which has much larger ε – as shown in Figure 15b, ε increases
per hop from the master to the participant clocks. On the other
hand, tree-based solutions can use synchronous messaging,
achieving much lower ε. §6.2 evaluates this effect.
4.5.2 Sundial’s Design Choices
Sundial’s key contribution is in the third design choice, which
exhibits fundamental tradeoff between small ε and fault-
tolerance. Sundial aims to achieve the best of both worlds, by
combining tree and mesh topologies: Sundial sends messages
through a mesh, such that it still has available edges upon
failures; but the effective synchronization only happens over
a primary tree, enabling it to use synchronous messaging.

The first two design choices have clear best options, and
they are mainly determined by hardware availability. In our
implementation, Sundial synchronizes neighboring devices at
the L2 level as the specialized PHY layer is not available. That
said, Sundial can benefit from such a layer if it’s available.
Comparison with other schemes is in §7.

5 Application Access to Synchronized Clocks
In Sundial, the primary mechanism to access synchronized
clocks is via hardware Rx/Tx timestamps. Additionally, for
applications that want to access host clock directly, Sundial
provides local host to NIC clock synchronization.
Access via hardware timestamps. NIC and switch hard-
ware timestamps marked on the packets [29] are the pri-
mary access mechanism, for which it provides ∼100ns time-
uncertainty bound. Applications such as distributed databases
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Figure 16: PI controller based on clock-skew; offset and skew are
measured periodically and an adjustment is computed using suitable
P and I constants.

that have strict ε requirements rely directly on NIC-Rx-
timestamps marked on the last packet in a message to order
them to provide consistency properties. Networking stacks
such as Snap [26] provide op-stream interface to applications
(preventing out-of-order delivery) and export the NIC times-
tamps. Telemetry and congestion control applications also
rely directly on NIC timestamps to measure one-way delays.
Host clock synchronization. We also synchronize the local
host clock to the NIC clock for applications that want to
directly read the host clock (and don’t require strict guarantees
on ε). We use a Proportional-Integral controller based on
clock-skew between the host and NIC clocks as depicted in
Figure 16. We measure the offset, o(t) and skew, s(t), every
T time-units (we use T =10ms) and apply the rate adjustment
to the host clock to tick faster or slower. The constants P and
I need to be tuned in production. One challenge is that the
two clock-measurements are subject to local delays such as
PCIe jitter and we use linear regression to filter the noise out.

6 Evaluation
Through experiments in a >500-machine testbed-prototype
(§6.1) and through large-scale simulations (§6.2), we show
that Sundial’s time-uncertainty bound is ∼100ns under differ-
ent types of failures, and discuss application improvements
enabled by Sundial in §6.3.

6.1 Time-uncertainty Bound (ε) in Testbed
6.1.1 Methodology
Testbed. The testbed consists of 23 pods, 276 switches and
552 servers. A pod including 12 switches and 24 servers acts
as a failure domain. The oscillators used in the hardware have
a frequency specification of ±100ppm. The depth of the base
spanning tree in the topology is 5.
Schemes for comparison. We compare Sundial with re-
cent submicrosecond-level clock synchronization schemes:
PTP [4], Huygens [13], and DTP [21]. While they do not
consider time-uncertainty bound (ε) and how it is reported to
applications, we augment the designs to provide ε, according
to Equation 1 in §3.1 and describe them below.
Sundial: We set the sync-interval to 90µs.10 The timeout is
185µs (>2×sync-interval). The second timeout for the backup
root to elect itself is set to 180µs (185+180>4×sync-interval).
The backup plan has a maximum depthbackup of 6.
PTP+ε: PTP is the most common submicrosecond-level syn-

1090µs is just enough for ∼100ns ε, although lower ε is achievable.

chronization protocol with a default sync-interval of two sec-
onds. To add ε, we set εbase to 5ns×depth, and max_drift_rate
to 200ppm. Tlast_sync is updated as follows – for root's chil-
dren, we set Tlast_sync = Tlast_msg; but for other descendants,
we set Tlast_sync = Tlast_msg−Trecovery to account for possible
out-of-sync duration caused by remote connectivity failures
that are oblivious to them (§3.2.2). We set Trecovery to 2s, since
it takes 2s to recover from failure.11

PTP+DTP+ε: What if we could set lower sync-interval in
PTP+ε? We evaluate another scheme that leverages DTP –
DTP allows very small sync-interval (a few microseconds)
with low bandwidth overhead by modifying the physical layer
protocol. Since DTP requires hardware support, we emulate it
in our testbed by setting 5µs sync-interval (much smaller than
90µs).12 All devices that are not direct children of the root
set Trecovery=100ms, where 100ms is the typical connectivity
failure recovery time measured from datacenters.13

Huygens+ε: Huygens gathers network-wide sync-messages
during each 2-second sync-interval, and uses machine learn-
ing to decide the best adjustment for each device at the begin-
ning of the next sync-interval. While we do not have its imple-
mentation, we report the best possible ε it can achieve. Specif-
ically, we assume it is not affected by connectivity failures
because of its use of network-wide information, so Tlast_sync
is set to the beginning time of each sync-interval (without
minus Trecovery). We also assume it can filter out delay noises
entirely and optimistically set εbase to 0.
Failure injection. We evaluate the impact of failures on ε

in Sundial and above schemes by injecting link failures, non-
root device failures, root failures, and domain failures (where
multiple devices can go down).
Metrics and measurement approach. We measure ε on ev-
ery device by running a daemon in the firmware to read ε

every 10µs. After a failure, the controller sends an RPC to
configure the devices for recovery. The frequent monitoring
interferes with processing RPCs that are sent by the controller
in the event of failures. As a workaround, we set a stop time
which allows the controller RPC to execute after the monitor-
ing stops. In this way, the monitoring tells us which devices
are affected by failures and their ε. But it also inflates the con-
troller delay, which is unfair to other schemes as they heavily
rely on the controller for failure recovery. With knowledge
of the expected controller delay, we can easily restore the
expected ε based on the measured ε (Figure 17), because ε’s
behavior is deterministic during failures recovery: ε keeps
increasing, and goes back to normal when the failure is recov-

11In favor of low ε, Trecovery = 2 seconds is already a very optimistic setting
for PTP+ε, because recovery may take longer if the next sync-message is
also dropped by another failure that just happens at that time. Setting Trecovery
larger results in even higher ε. But we show that even with this optimistic
setting, PTP+ε still has much higher ε than Sundial.

12This is sufficient to show the improvement of ε, even though we don’t
have the physical layer protocol to keep the bandwidth overhead low.

13This is already friendly to PTP+DTP+ε because to guarantee correct ε,
Trecovery should be the maximum recovery time, which is several seconds.
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Figure 17: Restoration of ε under inflated controller delay.

Figure 18: CDF of ε measured across devices without failures.

ered. To get the expected controller delay, we use its lower
bound, the delay on the controller (without network delay),
which is more friendly to schemes other than Sundial.
6.1.2 ε Distribution without Failures
Figure 18 shows the distribution of ε over all devices under
different schemes. In Sundial, ε≤43ns, which matches the
calculated value – the deepest device in the tree has εbase of
25ns, and 90µs sync-interval leads to an additional 18ns.

In contrast, all other schemes have a much higher ε. In
PTP+ε and PTP+DTP+ε, devices that do not directly synchro-
nize to the root have to set Tlast_sync earlier than Tlast_msg by
2s and 100ms respectively, to account for possible failure-
induced out-of-sync periods, so their ε can go up to 800µs and
20µs respectively during a sync-interval. Devices directly syn-
chronizing to the root can set Tlast_sync to Tlast_msg and achieve
lower ε. So their ε increases from 5ns (1-hop εbase) to∼400µs
and 6ns respectively (2s and 5µs sync-intervals lead to 400µs
and 1ns additional ε respectively at the end of each sync-
interval). For these devices (∼6.3% of all), PTP+DTP+ε’s
low ε shows the benefit of extremely small sync-interval when
failure is not a concern. Note that if available, Sundial can
also benefit from DTP’s physical layer design to futher re-
duce sync-interval. In Huygens+ε, during each 2s interval,
ε increases from 0 to 400µs. Reducing sync-interval comes
with CPU cost (Huygens already consumes 0.44% CPU of
the whole cluster). However, even if the sync-interval was
halved, ε is still 3 orders of magnitude higher than Sundial’s.
6.1.3 ε Distribution during Failures
To understand the behavior under failures, we inject 50 ran-
dom failures over a course of 6 minutes including 24 single
link failures, 23 non-root single device failures, 2 domain
failures and 1 root failure.

Figure 19 shows the time series of ε of a device affected
by a link failure. In Sundial, ε is sawtooth between 15ns and
33ns during normal time, because this device has a depth of
3 in the tree.14 When the link failure happens, ε increases

14Figure 21 shows the behavior at smaller timescales.

Figure 19: Time series of ε of a device affected by a link failure.
The failure happens at 1s and the controller reacts to it near 1.1s.

Figure 20: Blast radius of failures under different schemes. Impacted
device time is the summation of per-device impacted time – duration
when a device stops receiving sync-messages – over all devices .

to a maximum of 84ns and goes down in just 270µs (af-
ter the 185µs timeout, the next message is at 270µs). Af-
ter that, ε is sawtooth between 30ns and 48ns, because its
εbase is set to εbase,backup by the local recovery, which is 30ns
(depthbackup=6). Once the controller reconfigures the span-
ning tree, ε goes back to between 15ns and 33ns because its
depth is 3. In PTP+ε, since the sync-message is dropped due
to this failure, ε continues to increase for the next 2 seconds.
Even if the sync-message was not dropped, ε for PTP+ε (w/o
failure) remains high. PTP+DTP+ε’s ε increases to 40µs and
recovers to 20µs when the controller recovers the connectiv-
ity. However, even if the controller delay was lower (50 ms),
it only reduces the peak ε to 30µs, but the normal ε is still
around 20µs. Huygens+ε is not affected by failures, but its ε

is normally very large (200µs at median and up to 400µs).

The behavior is similar under other failures – ε depends on
the recovery time. For PTP+ε and PTP+DTP+ε, the recovery
time depends on how long it takes for the controller to recover
from it. For Sundial, the recovery time is much smaller as it’s
local. Any non-root failure recovery time is around 270µs, as
is the case in Figure 19. The root failure takes slightly longer
to recover from (365µs after the two timeouts) and ε increases
to up to 103ns. The devices at different levels in the tree have
slightly different ε (discussed in §6.1.4).

We now study the spatial and temporal impact range (blast
radius) of failures. Figure 20 shows that Sundial’s blast radius
is very small. Even after 50 failures, the total impacted time
summarized over all devices is only 131ms. The most signifi-
cant jump happens when the root fails (40-th failure). PTP+ε

and PTP+DTP+ε’s blast radius is much higher owing to their
longer recovery time. Note that more devices are affected by



failures under Sundial (401 in total) than under PTP+ε (3 in
total) and PTP+DTP+ε (55 in total) as Sundial’s backup-plan-
based recovery can affect remote devices as well (those under
the subtree of the failure). Even then the total impacted time
for Sundial remains significantly smaller.

PTP+ε exhibits a step function because only failures oc-
curing close to sync-interval boundaries affect it as the sync-
interval of 2s is longer than the time to recover in most cases.
The impact, however, is larger than in other schemes because
it takes 2s for the next sync-message. PTP+DTP+ε’s sync-
interval is only 5µs and thus, every failure affects it. While
Huygens+ε is not affected by connectivity failures, its ε re-
mains high as shown before.
6.1.4 Microbenchmarks
How Sundial’s different techniques improve ε. We zoom
into details of how each technique improves ε. Specifically,
starting with PTP+ε, we add (1) frequent sync-messages, (2)
synchronous messaging, and (3) backup plan to it one by
one, resulting in four schemes: PTP+ε, PTP+ε+freq_msg,
PTP+ε+freq_msg+sync_msging, and Sundial itself.

Figure 21 shows the time series of ε during a link failure.
Frequent sync-messages improve ε by an order of magnitude.
Synchronous messaging further reduces ε during normal time
as it helps each device detect connectivity failures: as long as
a device receives a sync-message, it is connected to the root,
so Tlast_sync can be safely set to Tlast_msg. Finally, adding the
backup plan significantly speeds up the failure recovery – ε

only increases for 270µs to a maximum of 84ns before the
backup plan is activated, two orders of magnitude lower.

To show how Sundial’s backup plan handles domain
failures, we also run Sundial without considering domain
failures (called Sundial w/o domain). We find that if a
domain failure simultaneously takes down both the pri-
mary and backup parents of a device, the device’s ε is like
PTP+ε+freq_msg+sync_msging in Figure 21. This is ex-
pected because a down backup parent is equivalent to no
backup parent. But if the failure domain is considered in the
backup plan, ε is similar to Sundial in Figure 21, because the
backup plan guarantees that no device loses both its primary
and backup parents due to this domain failure. We also try
another domain failure, which gradually takes down the pri-
mary and backup parents of a device, mimicing the domain
failure that gradually takes down multiple devices or links
(e.g., Figure 4). The result is similar.
Distribution of ε at different levels of the tree. We plot the
maximum ε across devices at different depths, under differ-
ent scenarios, shown in Figure 22. Root’s ε is always 0. ε

increases linearly with depth, which is expected as each level
increments εbase by 5ns.

6.2 Large-scale Simulations
We compare Sundial vs Marzullo’s algorithm [27], an agree-
ment algorithm for fault-tolerant clock-synchronization which
is used by NTP [28] and TrueTime [12]. Marzullo’s algorithm

Figure 21: A link failure happens at 50 ms. The controller reacts to
the failure at around 150 ms.

Figure 22: Distribution of ε at different levels in the tree.

also introduces time-uncertainty bound (ε) (called as error-
bound in the original version). Since it is not supported in
hardware due to its complexity, we use large scale simulations
to demonstrate the performance characteristics.

Marzullo’s algorithm synchronizes clocks through a mesh,
so it can tolerate connectivity failures but has higher ε (§4.5).
To reconcile the different time values and ε from multiple
clocks, each node does intersection of time-uncertainty ranges
of different clocks as the correct time should be within all
ranges. A set of master clocks (1 or more clocks synchronized
via GPS) serve as the source of synchronization, whose ε

is always close to zero. Broken clocks can also be detected
when the intersection result is empty. We simulate in a Jupiter
topology [33] with 88,064 devices, where each node sends
sync-messages to all its neighbors to maximize the tolerance
to failures. We set 2 masters to tolerate master failures. The
sync-interval is 90µs, same as Sundial. Figure 23 shows that
during the normal time, Sundial has smaller ε than Marzullo’s
algorithm. Under failures, Marzullo’s algorithm’s ε is affected
insignificantly. For Sundial, ε increases during failure recov-
ery; the largest ε is 178ns, which is under the root failure.

Figure 23: CDF of ε during normal time in Jupiter in simulation.



DTP [21] Huygens [13] Marzullo [27] PTP boundary clock [4] Sundial
Message type Special PHY L3 Unspecified L2 L2

Dealing with delay noises Neighbor Multi. msg Unspecified Neighbor Neighbor
Synchronization structure No master Master, mesh Master, mesh Master, tree Master, mesh+tree

Support time-uncertainty bound No No Yes No Yes
Table 1: Design choices of state-of-the-art clock synchronization schemes. Italic options are the best.

6.3 Application Performance Improvement
Distributed transactional system. We evaluate the impact
of smaller time-uncertainty bound using a load-test provided
to us by Spanner team [12]. We run the load-test inside a dat-
acenter. The load-test does 4KB transactions and we measure
commit-wait gap – time to wait out time-uncertainty before
committing the transaction. Results are in Table 2 where we
show that our system improves performance by 3-4× not only
in the median but also at the 99-th percentile.

Baseline With Sundial
Median 211µs 49µs
99-%ile 784µs 238µs

Table 2: Sundial improves commit-wait latency by 3-4× for Spanner
running inside a datacenter.

Congestion Control. Delay-based congestion control such
as Swift [17] is widely used in datacenters relying on end-
to-end RTT measurements to control sending rate. A key
challenge with such schemes is how to differentiate between
forward and reverse-path congestion. As an example, con-
gestion in the reverse path can also inflate RTT causing a
sender to slow down even though there is no congestion in the
forward path.15 Synchronized clocks solve this problem as
they enable the measurement of one-way delay (OWD) which
can pinpoint the direction in which congestion is occurring.

We perform a microbenchmark with 3 servers – A, B and
C with Swift congestion control. First, we only send traffic
from A to B which achieves line-rate throughput. Next, we
introduce reverse-path congestion by adding traffic from B
and C to A. In Table 3, we observe A’s throughput goes down
to 50Gbps even though there was no congestion in the forward
path. Replacing RTT with OWD as measured using Sundial
resolves this completely and A continues to send at line rate.

RTT OWD
No reverse congestion 80.1 Gbps 80.5 Gbps
Reverse congestion 50.5 Gbps 80.9 Gbps

Table 3: Using one-way delay (OWD) improves throughput in the
presence of reverse-path congestion.

7 Related Work
Other clock synchronization systems. Table 1 compares
state-of-the-art solutions, in the design space outlined in §4.5.

15While prioritizing the ACK may solve the problem, it is impractical in
production because of two reasons. (1) Network priorities are typically tied
to business priorities; and we simply cannot send ACKs for lower business
priority traffic on a higher network priority. (2) Sending ACKs on a higher
network priority precludes ACK piggybacking on data packets, thereby in-
creasing the packets-per-second to process. This is especially detrimental for
CPU-efficient networking stacks such as PonyExpress in Snap [26].

DTP [21] introduces a specialized PHY layer to achieve
zero bandwidth overhead of sync-messages. If this modified
PHY can be standardized and productionized in the future,
Sundial can readily benefit from it to have even lower sync-
interval and ε. However, DTP does not reflect physical time
since it doesn’t have a master clock.

Huygens [13] does not synchronize switches, so it uses
multiple messages between each pair to filter out noises. As a
result, Huygens’ sync-interval is limited, so it cannot achieve
tight ε. Huygens’ main advantage is that it is implemented
completely in software and doesn’t require hardware support
(other than hardware timestamps) but it does not consider
ε; and if incorporated, Huygens’ ε is large primarily due to
the large sync-interval. While it assumes clocks drift slowly
during normal time, it cannot set a small max_drift_rate as the
maximum drift is subject to failures (§3.2.1); otherwise it risks
datacenter-wide application-level errors (e.g., inconsistent
transactions), which is unacceptable.

Marzullo’s algorithm [27] is the first to introduce ε but
its ε is high because it sends messages through a mesh. PTP
boundary clock [4] is based on a tree, and is not fault-tolerant.

Other solutions are too expensive (e.g., GPS [22]), too
complex [18, 20, 31] or do not provide physical time [30, 34,
36].
Fault tolerance in other systems. In distributed systems and
networking, fault tolerance is provided through redundancy
[5, 10, 14, 19, 33, 38]. However, Sundial’s backup plan cannot
be chosen arbitrarily and needs to satisfy a set of properties
(§4.2.1) to be generic to different types of failures.

Ethernet uses spanning tree protocols [2, 15] that can re-
compute a spanning tree in a distributed fashion after a failure,
but they usually take up to a few seconds to converge [15].

8 Conclusion
Sundial is the first submicrosecond-level clock synchroniza-
tion system that is resilient to failures. It uses hardware-
software codesign to quickly detect failures and recover from
them. Our evaluation shows that Sundial provides ∼100ns
time-uncertainty bound under different types of failures, and
improves performance in Spanner and in Swift.

9 Acknowledgements
We thank our shepherd Lorenzo Alvisi and OSDI reviewers
for their helpful feedback. We also thank Arjun Singh, Jakov
Seizovic, David Wetherall, David Dillow, Joe Zbiciak, and
Xian Wu for the constructive feedback, Peter Cuy, Alex Iriza,
and Bryant Chang for guidance on implementation, Shin Mao,
Nanfang Li, and Ioannis Giannakopoulos for help on experi-
mental evaluation.



References
[1] Broadcom: Timing over Packet (ToP) Pro-

cessor for Precision Timing Applications.
https://www.broadcom.com/products/
embedded-and-networking-processors/
communications/bcm53903.

[2] IEEE 802.1D Work Group, IEEE Standard for Local and
Metropolitan Area Networks: Media Access Control
(MAC) Bridges, 2004.

[3] CockroachDB, 2008. https://github.com/
cockroachdb/.

[4] IEEE Standard 1588-2008, 2008. http:
//ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=4579757.

[5] Redundancy N+1, N+2 vs. 2N vs. 2N+1,
2014. https://www.datacenters.com/news/
redundancy-n-1-n-2-vs-2n-vs-2n-1.

[6] IEEE 1588 PTP and Analytics on the Cisco
Nexus 3548 Switch, 2017. https://www.
cisco.com/c/en/us/products/collateral/
switches/nexus-3000-series-switches/
white-paper-c11-731501.html.

[7] Clock Oscillators Surface Mount Type KC3225L-
P2/ KC3225L-P3 Series, 2018. https:
//global.kyocera.com/prdct/electro/pdf/
kc3225l_p2p3_e.pdf.

[8] Juniper Precision Time Protocol Overview, 2020.
https://www.juniper.net/documentation/en_
US/junos/topics/concept/ptp-overview.html.

[9] Mellanox Precision Time Protocol, 2020. https:
//docs.mellanox.com/display/ONYXv381174/
Precision+Time+Protocol.

[10] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network ar-
chitecture. ACM SIGCOMM computer communication
review, 2008.

[11] K Mani Chandy and Leslie Lamport. Distributed snap-
shots: Determining global states of distributed systems.
ACM Transactions on Computer Systems (TOCS), 1985.

[12] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.

Spanner: Google’s globally-distributed database. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), 2012.

[13] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.
Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’18, 2018.

[14] Albert Greenberg, James R Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta.
Vl2: a scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM, 2009.

[15] New BPDU Handling. Understanding rapid spanning
tree protocol (802.1 w). Catalyst, 2948(L3/4908G):L3.

[16] Richard Koo and Sam Toueg. Checkpointing and
rollback-recovery for distributed systems. IEEE Trans-
actions on software Engineering, 1987.

[17] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for
congestion control in the datacenter. In Proceedings of
the ACM SIGCOMM, 2020.

[18] Leslie Lamport. Synchronizing time servers. Digital,
Systems Research Center, 1987.

[19] Leslie Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[20] Leslie Lamport and Peter M Melliar-Smith. Byzan-
tine clock synchronization. In Proceedings of the third
annual ACM symposium on Principles of distributed
computing, pages 68–74, 1984.

[21] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. Globally synchronized time via dat-
acenter networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, 2016.

[22] Wlodzimierz Lewandowski, Jacques Azoubib, and
William J Klepczynski. Gps: Primary tool for time trans-
fer. Proceedings of the IEEE, 87(1):163–172, 1999.

[23] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Flowradar: A better netflow for data centers. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), 2016.

[24] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data center

https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://www.broadcom.com/products/embedded-and-networking-processors/communications/bcm53903
https://github.com/cockroachdb/
https://github.com/cockroachdb/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4579757
https://www.datacenters.com/news/redundancy-n-1-n-2-vs-2n-vs-2n-1
https://www.datacenters.com/news/redundancy-n-1-n-2-vs-2n-vs-2n-1
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3000-series-switches/white-paper-c11-731501.html
https://global.kyocera.com/prdct/electro/pdf/kc3225l_p2p3_e.pdf
https://global.kyocera.com/prdct/electro/pdf/kc3225l_p2p3_e.pdf
https://global.kyocera.com/prdct/electro/pdf/kc3225l_p2p3_e.pdf
https://www.juniper.net/documentation/en_US/junos/topics/concept/ptp-overview.html 
https://www.juniper.net/documentation/en_US/junos/topics/concept/ptp-overview.html 
https://docs.mellanox.com/display/ONYXv381174/Precision+Time+Protocol 
https://docs.mellanox.com/display/ONYXv381174/Precision+Time+Protocol 
https://docs.mellanox.com/display/ONYXv381174/Precision+Time+Protocol 


networks. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, 2016.

[25] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and et al.
Hpcc: High precision congestion control. In Proceed-
ings of the ACM Special Interest Group on Data Com-
munication, 2019.

[26] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, and et al. Snap: A microkernel approach to host
networking. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, 2019.

[27] Keith Marzullo and Susan Owicki. Maintaining the time
in a distributed system. In Proceedings of the second
annual ACM symposium on Principles of distributed
computing, pages 295–305, 1983.

[28] D. L. Mills. Internet time synchronization: the network
time protocol. IEEE Transactions on Communications,
39(10):1482–1493, 1991.

[29] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vah-
dat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacenter.
SIGCOMM Comput. Commun. Rev., 2015.

[30] Luca Schenato and Federico Fiorentin. Average
timesynch: A consensus-based protocol for clock syn-
chronization in wireless sensor networks. Automatica,
47(9):1878–1886, 2011.

[31] Ulrich Schmid. Synchronized utc for distributed real-
time systems. Annual Review in Automatic Program-
ming, 18:101–107, 1994.

[32] Alex Shamis, Matthew Renzelmann, Stanko Novakovic,
Georgios Chatzopoulos, Aleksandar Dragojeviunde-
fined, Dushyanth Narayanan, and Miguel Castro. Fast
general distributed transactions with opacity. SIGMOD
’19, 2019.

[33] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized con-
trol in google’s datacenter network. ACM SIGCOMM
computer communication review, 2015.

[34] Roberto Solis, Vivek S Borkar, and PR Kumar. A new
distributed time synchronization protocol for multihop
wireless networks. In Proceedings of the 45th IEEE
Conference on Decision and Control, pages 2734–2739.
IEEE, 2006.

[35] Robert Endre Tarjan. Edge-disjoint spanning trees
and depth-first search. Acta Informatica, 6(2):171–185,
1976.

[36] Geoffrey Werner-Allen, Geetika Tewari, Ankit Patel,
Matt Welsh, and Radhika Nagpal. Firefly-inspired sen-
sor network synchronicity with realistic radio effects. In
Proceedings of the 3rd International Conference on Em-
bedded Networked Sensor Systems, SenSys ’05, 2005.

[37] Nofel Yaseen, John Sonchack, and Vincent Liu. Syn-
chronized network snapshots. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, 2018.

[38] Mingyang Zhang, Radhika Niranjan Mysore, Sucha
Supittayapornpong, and Ramesh Govindan. Under-
standing lifecycle management complexity of datacenter
topologies. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019.

[39] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jef-
frey C. Mogul, and Amin Vahdat. Minimal rewiring:
Efficient live expansion for clos data center networks. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), 2019.

[40] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y. Zhao, and et al. Packet-level teleme-
try in large datacenter networks. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, 2015.


	Introduction
	Need for Tight Time-uncertainty Bound
	Failures in Clock Synchronization System
	Background on Clock Synchronization
	Impact of Failures on 
	Failures that Induce Large Frequency Variations
	Connectivity Failures
	Broken Clocks and Message Corruption


	Sundial Design and Implementation
	Sundial Hardware Design
	Frequent Synchronous Messaging
	Fast Failure Detection
	Time-uncertainty Bound Calculation

	Sundial Software Design
	Centralized Controller
	Failure Handler in the Device Software

	Implementation
	Practical Considerations
	Sundial's Position in the Design Space
	Design Space of Clock Synchronization
	Sundial's Design Choices


	Application Access to Synchronized Clocks
	Evaluation
	Time-uncertainty Bound () in Testbed
	Methodology
	 Distribution without Failures
	 Distribution during Failures
	Microbenchmarks

	Large-scale Simulations
	Application Performance Improvement

	Related Work
	Conclusion
	Acknowledgements

