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Abstract

The cloud is part of the daily life of billions of people and is carrying most of the computation
happening on the planet. To deliver the hyper computing power, the network plays a core role in
connecting hundreds of thousands of machines inside datacenters. However, as many new cloud
applications (e.g., large-scale deep learning, high-performance computing) and new architectures
(e.g, resource disaggregation, more heterogeneous hardware accelerators) are demanding ever-
increasing high performance, the network starts to become the bottleneck, and it is very difficult
to troubleshoot performance problems. This boils down to the insufficiency in the two essential
networking tasks: control and telemetry.

• Congestion control and clock synchronization are the two control tasks critical for applica-
tion performance. However, they have to sacrifice the normal-case performance for worse
cases in production, because they are not robust to the high dynamics of traffic and failures.

• We also need precise and fine-grained telemetry for performance troubleshooting. However,
we often miss important information and cannot pinpoint the exact culprits, because exist-
ing telemetry systems supported by switches and hosts are either imprecise or coarse-grained.

To tackle the challenges, we set qualitatively better objectives than existing approaches: introduc-
ing robustness to the performance-critical control tasks, and design telemetry systems that are both
precise and fine-grained. Achieving the new objectives is challenging due to the resource and obser-
vation limitations of the network devices. Fortunately, new programmable switches and NICs make
it possible to codesign different devices, leveraging the advantage of different devices to collabora-
tively achieve breakthroughs and realize the new objectives.

Based on the new opportunities for codesign, we have three key design principles: (1) closing the
gap between observation and control to make control precise and timely, (2) designing new algo-
rithms and data structures to make effective use of different devices’ capabilities, and (3) rethinking
the division of labor among switches, hosts, and the controller with a paradigm shift away from the
self-contained design model. Guided by the principles, we design novel network control and teleme-
try schemes that achieve the new objectives.

To robustly provide high performance under dynamics, we design novel control schemes that
close the gap between observation and control. We design HPCC, a congestion control scheme,
which uses a novel metric for both observation and control, and use new programmability to deliver
switch states to hosts to help calculate the new observation metric. We also design Sundial, a clock
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synchronization scheme, which uses a backup plan precomputed by the centralized controller to
enable fast failure recovery based on device-local observation.

We also design precise and fine-grained telemetry systems. For switches, we design FlowRadar
and LossRadar to expose precise flow and loss information, by dividing the maintenance of hash
tables into simple per-packet updates in switches and small amounts of complex computation in the
controller. For the host TCP stack, we design DETER, in which hosts only record 0.03% of traffic
and the controller can replay per-packet, per-line-of-code information.

Our systems have very wide impacts. Since we designed HPCC in 2019, it is not only deployed
in Alibaba cloud, but also supported by many switch and NIC vendors (Intel, Mellanox, Broad-
com, Cisco, Innovium, Marvell, etc.); in addition, Alibaba, Intel, andMellanox are actively writing
an IETF draft of HPCC, with the latest version in September 2020. We have built a prototype of
Sundial at Google and deployed it in a test cluster with >500 servers in mid 2020, and we show per-
formance improvements in Spanner and in Swift brought by Sundial. FlowRadar and LossRadar
also result in a joint patent with Barefoot/Intel, and Alibaba is very interested in using the technique
for loss detection. Finally, DETER’s Linux kernel-based implementation is open-sourced, and we
reveal several TCP problems when running large Spark and RPC systems in the dissertation.
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1
Introduction

The cloud is part of the daily life of billions of users and is carrying most of the computation hap-

pening on the planet: web search, social media, video services, online shopping, smart home, IoT,

scientific computation, etc. For example, Google already serves 3.5 billion search queries per day;

yet, not only the number of search queries is continuously growing, the type of search is also diversi-

fying (e.g., from texts to audio, image, video). In addition, these user-facing services drive even larger

and ever-growing volumes of backend computations, such as big-data analytics, video analytics,
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machine learning, distributed database, and in-memory cache.

The huge amount of cloud computing takes place in large-scale datacenters that each consists of

100,000s of hosts inter-connected by 10,000s of switches. The network plays a core role in making

all resources available to applications with high performance.

However, the network is becoming the performance bottleneck under the ever-increasing re-

quirements for high performance. Many applications faced by billions of users, such as translation,

recommendation, search, and virtual assistant, are driven by continuous, large-scale machine learn-

ing training running on high-speed devices such as TPU or GPU, which periodically transfers large

volumes of data, and their performance bottleneck is usually in the network. In addition, many

HPC applications with profound impact, such as medical research, genomics, weather forecasting,

and seismic analysis, are moving into the cloud44, bringing their low latency and high throughput

requirements170.

Besides the applications, new architecture trends are raising the bar of good performance even

further. Resource disaggregation is one trend: resources like disks (HDD, SSD, NVMe) are not

limited to their hosting server, but shared across the entire datacenter; even memory disaggrega-

tion is on the way. So the previous in-server disk or memory accesses are or will go through the net-

work, demanding ultra-low latency and adding tremendous load to the network. Moreover, cloud

providers are developing more and more heterogeneous, modularized hardware accelerators, and

rely on the network to compose them to support various applications51.
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1.1 Challenges and Objectives of Network Control and

Telemetry

While the performance requirements have grown dramatically, the networking techniques used to-

day have not kept up. Consequently, the network starts to become the bottleneck in next-generation

cloud computing, and it is very difficult to troubleshoot performance problems.

This boils down to the insufficiency in the two essential networking tasks: control and telemetry.

We present the challenges and find that the design objectives of existing solutions are unsuitable

under the rapidly-increasing performance requirements. Therefore, we propose qualitatively better

objectives to tackle the problems.

1.1.1 Control is not Robust to Dynamics

Applications need high-speed data transfer to freely share data and scale out, and need precisely syn-

chronized clocks for fine-grained coordination across servers. Thus to achieve high performance, we

need careful control of the traffic rate to fully utilize the bandwidth while avoiding congestion, and

synchronization of clocks over the network. However, these performance-critical control tasks have

to sacrifice the normal-case performance for worse cases in production, because they are not robust

to the high dynamics in production, where new traffic starts and finishes frequently at microsecond

scale, and failures are very common and exhibit high diversity (connectivity, cooling, power, etc.).

Congestion control (CC). CC is critical to providing high-throughput and low-latency data trans-

fer to applications. However, existing CC schemes, although may perform well in lab settings,

have never achieved the raw potential allowed by the hardware. For example, my study of Alibaba’s

RDMA network∗ shows that under dynamic traffic (which exhibits long-tail flow size distribution

∗A high-speed network accelerated by hardware-offloaded networking stack.
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and includes incast), even only utilizing 30% of network bandwidth on average, the 95-th percentile

latency can go above 1ms131 (around 200x the base RTT)!

The reason is that the CC schemes in use today are not robust to the traffic dynamics in produc-

tion, where flows start and finish frequently. When multiple flows start (e.g., incast), CC cannot

robustly slow down to the right level, causing buffer overflow, so it’s hard to run the network at high

utilization. When some flows finish and release bandwidth, CC is also not robust enough to ramp

up other flows immediately, so to avoid wasting bandwidth, CC keeps standing queues all the time,

which inflates normal-case latency.

The severity is increasing. As the bandwidth continues growing exponentially, rate mismatch fills

up the buffer much faster. As the bare-metal latency continues decreasing, queuing delay will be

more dominant.

Clock synchronization. Synchronized clocks are critical for many distributed transactional sys-

tems and databases to achieve low latency and high throughput77,159,18. Several recent solutions

target submicrosecond-level precision, but they can only achieve it in lab settings where several im-

portant types of failures are ignored. In real production, only millisecond-level precision is available

at the datacenter scale.

The reason is that these schemes are not robust to failures, which is highly dynamic in datacen-

ters. For example, they fail to notice large clock drifts during cooling failures, causing the risk of

application errors (e.g., inconsistent transactions)! Moreover, they take a long time to recover from

synchronization disruptions caused by switch or link failures, leading to even higher risks. Such risks

are unacceptable for many applications that serve millions or billions of people, so they have to still

use millisecond-level precision bound today.

This problem is more urgent today. With recent software and hardware improvements such

as RDMA, NVMe, and in-memory storage, network and storage latencies are going towards the

microsecond level, so the coordination time is becoming the bottleneck, which is on the order of the
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precision bound of clocks.

New objective: adding robustness to these performance-critical control tasks, so they can

quickly adapt to the dynamics with high performance. Although robustness is neglected by existing

schemes, it is actually important for high performance in highly dynamic production environments.

1.1.2 Telemetry is either Imprecise or Coarse-grained

The performance can be affected by many network factors, such as congestion, packet losses, fail-

ures, software bugs, misconfigurations, network updates, etc. Network telemetry is necessary for

troubleshooting performance problems. However, we often miss important information and can-

not pinpoint the exact culprits, because existing telemetry systems are either imprecise (sampled

or approximated) or coarse-grained (e.g., device or port-level counters). Specifically, as the band-

width continues growing exponentially, problems (e.g., buffer overflow) can be caused by just a

small percentage (e.g., <10%) overload, which necessitates precise telemetry. Moreover, we should

know not only the existence of problems, but also the culprits, victims, and locations, which needs

fine-grained telemetry.

We take an example to illustrate the importance of precise and fine-grained telemetry from switches.

When a TCP connection reports a packet loss, we first need to locate the loss. However, existing

switches can only report total loss counters, which is too coarse-grained; we need header informa-

tion to locate the loss. After knowing the location, we then want to know what other flows cause

the congestion, and by howmuch. Unfortunately, NetFlow is based on sampling, and sketches are

approximated. While they can detect heavy hitters (large flows), the volumes are imprecise; more-

over, congestion can happen without heavy hitters (e.g., during incast), in which case they miss most

culprits. We need precise, flow-level information to answer the question.

On the host, the networking stack is very complex (e.g., Linux 4.4 TCP has 63 parameters and
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>10K lines) and under continuous error-prone development (16 bugs identified in Linux TCP in

two months128), so every line in the code can be the source of bug. Moreover, subtle differences

in parameters and features may lead to completely different performances. These problems are ex-

tremely difficult to diagnose at large scales, but no logging tools can provide all information at large

scales.

New objective: design telemetry systems that are both precise and fine-grained. This is in

contrast to existing works that focus on precision or granularity independently, but not both.

1.2 Limitations of Individual Devices and Opportunities

for Codesign

Achieving these new objectives—adding robustness to performance-critical control tasks and de-

signing precise and fine-grained telemetry—are not easy, because there are fundamental limitations

in the network devices that carry out these control and telemetry tasks. Fortunately, there are new

opportunities in these devices. Although these new opportunities cannot directly break the funda-

mental limitations, they open doors for codesign that leverages the advantages of different devices

to collaboratively achieve breakthroughs and realize the new objectives (e.g., coordinate hardware’s

high-speed processing and software’s ability of complex computation to achieve tasks that are im-

possible in either hardware or software separately.).

1.2.1 Resource and Observation Limitations of Individual Devices

Limited observation of other devices. Each device has very limited observation of other devices,

so it is difficult to make robust decisions. For example, hosts only observe drops, end-to-end delay,

or ECNmarks of packets; such vague observation is hard for CC to make agile control decision
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robustly. Also devices only observe local failures, so they cannot take robust reactions to failures that

need global information, such as failures that disrupt clock synchronization.

Limited computing capability and memory. To achieve a high speed, the per-packet processing

time is very limited. For example, at a 100Gbps link, a 64B packet only have 6ns. Consequently,

hosts can perform a very limited number of operations per-packet; switches have more strict con-

straints because of its higher throughput—besides the limited operations, they also cannot support

complex operations that take too many cycles, such as multiplication and division160.

Limited per-packet time also means the usable memory size is limited. Switch ASIC only uses

SRAM and TCAM, which are only 10s of MB in size. Recent studies102,133,169 also show that,

despite the large DRAM, hosts should fit the memory usage in the CPU cache to sustain line-rate

packet processing, which is also only 10s of MB in size.

Therefore, these devices support very limited functionalities. For example, switches cannot even

maintain a hash table that is important for keeping precise and fine-grained information, because

resolving hash collisions takes multiple, non-constant operations, which is beyond the switch ca-

pability. Hosts also do not have the cycle and memory budget for copying and storing fine-grained

runtime states.

1.2.2 New Opportunities for Codesign

Within the fundamental limitations, however, the previously fixed-function hardware is becoming

flexible and programmable (i.e., we can redefine the usage of the limited memory and reprogram the

functions within the limitation of number and type of operations). It provides new opportunities

for codesign: we can customize the function of each device to leverage its own strength and to take

over the job that faces constraints on other devices, and we can customize the interactions among

devices.
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Taking over simple per-packet operations from other devices, and maintaining states for com-

plex processing by other devices. Compared to traditional switches, new programmable switch

ASIC’s match-action tables are programmable—they can be configured to match any bits in the

packet or metadata instead of pre-defined fields, and performmore flexible actions instead of fixed

ones. Therefore, we can do more flexible operations at line rate, such as arithmetic operations (+

and -), comparison (>, >=, <, <=, ==, and !=), bit operations (AND, OR, XOR, NOT, and bit

shift), and modifying packet with any values. Branching is also achievable by using the match to

check bits in the packet or metadata. Moreover, programmable switch ASICs also support more

diverse states, such as queue length, timestamp, etc. We can also customize states such as counters

(e.g., packet counters, byte counters), moving average, and state machines, as long as the state up-

date can be done in one cycle.

On the host, NICs are also becoming more programmable. With diverse types of SmartNICs

(e.g., multicore SoC-based, FPAG-based) quickly taking up the market, we can have customized

logic running in the NIC. SmartNICs have fewer constraints in flexibility than switch ASICs. For

example, some complex operations can be done in the SmartNIC, such as multiplications and divi-

sions. The state updates also don’t have the one-cycle constraint.

Although the fundamental limitation remains—the number and/or type of per-packet opera-

tions and memory size are still limited—the programmable and stateful processing at line rate lays

the foundation for codesigning switches or NICs with other devices. We can leverage switch ASIC

or NIC’s high speed to take over simple but per-packet operations from software, and use them to

maintain states that can be used by other devices for complex processing.

Flexible and fine-grained interaction with other devices. Switch ASICs and NICs can interact

with other switches and hosts by writing states to the packet header. A feature based on this, called

In-band Network Telemetry (INT)33, is widely supported recently131,65, which commonly writes

metadata such as queue length and timestamp to the packet header but can also write other cus-
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tomized states. Other switches and hosts get the information as the packet passes through them, and

possibly trigger processing there. This enables very fine-grained cross-device collaborations.

Switch ASICs and NICs can also interact with the local CPU and the network controller. The

switch ASIC can trigger local CPU processing by interrupting the CPU (e.g., by sending a packet

to CPU), and the CPUmay further invoke the network controller processing. The trigger can be

customized, based on periodic timers, timeout†, or certain packets. The NIC can interact with the

CPU or the controller more flexibly.

1.3 Key Design Principles

Based on the new opportunities for codesign, we have three key design principles.

Closing the gap between observation and control to make the control precise and timely.

Control schemes are normally in an observation-control loop (e.g., take reactions after observ-

ing congestion or failures). The problem is, however, that in today’s performance-critical control

schemes, what devices observe is far from what is needed for making the right control decisions. So

the control schemes either take multiple rounds of trial and error (e.g., TCP halves the window each

round, and based on the next-round observation decides whether to continue slowing down or not),

or reach out to remote devices which takes a long time (e.g., the device that observes a failure has to

notify the controller to recover the synchronization of clocks), thus lacking robustness. We close

the gap between observation and control, by redesigning the control loops, both observation and

control, so that they can make robust control decision immediately based on the observation.

Designing new algorithms and data structures to make effective use of different devices’ capa-

bilities. Because of the limited computing capability and memory, we often have to sacrifice func-

†Switch ASIC can generate packets with configured timer interval. We can use this feature to create cus-
tomized periodic routines, by programming match-action tables to match these timer-generated packets; we
can also setup customized timeout, by using the periodic routines to check and maintain states.
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tionality, precision, or granularity. So we design customized algorithms by extending techniques

from graph theory, data structure, and distributed systems to best leverage the device capability. For

example, based on graph theory, we extract global topology features, and encode them into a small

piece of data for each device to make decisions locally. We design special data structures to decom-

pose complex operations into simple ones that are supported by switches. We also extend the replay

technique to networking, making extremely efficient use of the packet processing resource.

Rethinking the division of labor among switches, hosts, and the controller with a paradigm

shift away from the self-contained design model. To unleash the true power of codesign, we

need a paradigm shift: a single device does not necessarily need to provide self-contained functions.

Traditionally, in the Internet, various devices (NICs and switches of different vendors and versions

controlled by different entities) coexist in the network, so they have to be self-contained to func-

tion well regardless of other devices. For example, traditionally TCP works without assumptions on

the switch, so it has to use non-switch-specific data (packet drops or delay‡); switches must provide

readily readable or usable monitoring data. Such a self-contained design model significantly con-

strains the achievable functionality. Fortunately, the cloud can program all devices, so individual

devices no longer need to provide self-contained functions. Instead, we can rethink the division of

labor among them to design much more balanced systems across the entire cloud ecosystem.

1.4 Control and Telemetry for High-performance Cloud

Networks

Based on the design principles, we redesign the network control and telemetry schemes that achieve

the new objectives.

‡ECN is rarely turned on in the Internet.
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1.4.1 Control Schemes that Robustly Provide High Performance

To robustly provide high performance under dynamics, we design novel schemes that close the gap

between observation and control. The new schemes are made possible by dividing the labor of ob-

servation between hosts and switches in congestion control, and dividing the labor of control be-

tween devices and the controller in clock synchronization.

HPCC131: a novel congestion control (CC) scheme that robustly provides high performance

under dynamic traffic. CC schemes used today converge slowly compared to the highly dynamic

DC traffic, so they have to sacrifice normal-case performance to prepare for cases that they cannot

handle timely. The slow convergence is because of the gap between the observed states (e.g., drop,

ECN, delay) and the control (rate adjustment): CC doesn’t know the best control after observing

states, and howmuch the states will change after control. To close the gap, we propose to observe

and to control both based on inflight bytes, so the observed state is unambiguously mapped to the

right control decision and vice versa. The number of inflight bytes going through a bottleneck is

not directly observable, so we identify the right set of switch states for hosts to calculate the number

of inflight bytes, and uses INT to convey information from switches to hosts. HPCC is proved to

converge to high throughput and 0 queueing delay in just 1 RTT in most cases. With the quick

convergence, HPCC robustly delivers high performance even under highly dynamic traffic.

Sundial127: a fault-tolerant clock synchronization scheme that robustly bounds the precision

at submicrosecond-level under diverse failures. Several schemes work in the sub-μs region, but

they don’t benefit many applications because many applications need bounded precision. We are the

first to introduce the precision bound to sub-μs clock synchronization. We find in existing schemes,

we have to sacrifice the bounds by 2-3 orders of magnitudes to prepare for failures, which is slow

to handle (during which clocks drift away). The key challenge is the gap between observation and

control: devices can only observe local failures, but handling failure needs the global information in
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the centralized controller. We close the gap with a novel backup-plan-based control: the controller

uses its global information to precompute and assign a backup plan to each device, based on which

the devices can take local actions with its local observation. To make effective use of the limited

device resource, we use graph theory to encode the global information into an extremely simple

backup plan that is generic to different types of failures (link, switch, domain). By properly dividing

the labor between devices and the controller, Sundial enables fast failure handling, thus robustly

bounding the precision at sub-μs level.

1.4.2 Telemetry Systems that are Both Precise and Fine-grained

We design precise and fine-grained telemetry systems for both switches and hosts. By carefully re-

thinking the division of labor, we design new algorithms that run per-packet simple operations cus-

tomized to the capabilities of switches or host packet processing, and run small amounts of complex

computation on the controller.

FlowRadar129 and LossRadar130: precise flow/loss telemetry from switches. Existing switch

telemetry systems are either imprecise (based on sampling or approximation) or coarse-grained (e.g.,

device or port-level packet counters), but effective diagnosis needs precise flow/loss information.

The key challenge is that handling hash collisions takes multiple, non-constant memory accesses,

which is impractical due to the limited capability of switch ASIC. Instead of handling collisions, we

design data structures that embrace collisions by XORing colliding items in the same entry, which

is readily supported by switches. To extract items, the controller collects the data structures from

multiple switches, and leverages the redundancy (e.g., flows traverse multiple switches) to reduce the

number of items mixed in each entry. With this technique, we design FlowRadar which provides

precise per-flow counters, and LossRadar which provides precise per-loss information. In this way,

we rethink the previously self-contained functions (e.g., NetFlow) in switches, and divide the labor
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among switches and the controller.

DETER128: precise per-packet, per-line-of-code information from host TCP stack. TCP

performance problems are notoriously difficult to diagnose. Lightweight TCP counters are too

coarse-grained, while the gold standard for diagnosis—tracing TCP executions on every packet—

is unscalable in datacenters. To scalably provide the precise and fine-grained details, we extend the

replay technique in distributed systems to the network. In the new context, the unique challenge of

replay is a butterfly effect—a small timing variation causes a chain reaction between TCP and the

network that drives the system to a completely different state in the replay. We find the root cause

to be the closed-loop nature of TCP, and identifies the minimum runtime information to record

that breaks the closed loop into open loops. With the proper division of labor, hosts only record

runtime data that is 0.03% in size of the traffic, while the controller can replay precise, per-packet,

per-line-of-code information.

1.5 Impact

As the performance requirement continues to grow in the post-Moore era, developing more hard-

ware is inevitable. However, hardware is much slower to develop and debug than software, and

takes several years to finally produce the chips. So it is extremely hard to directly turn existing soft-

ware into hardware. Thus, hardware-software codesign is inevitable. However, unlike software

engineering which we have more than 50 years of experience1, hardware-software codesign is just

beginning.

In this dissertation, we design and build several concrete systems, in the context of networking,

as an initial exploration of hardware-software codesign. We show the feasibility of using just slightly

improved hardware (flexibility) to robustly achieve hardware-level performance, precision, and gran-

ularity.
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The success of our designs also changes the traditional mindset of designing systems. The cloud

provider is usually viewed as a single entity, but different components are still managed by different

teams (e.g., server team, switch team, controller team), which usually still carry on the mindset of

designing self-contained systems within the teams. The success of our designs shows that a paradigm

shift is extremely beneficial. Our designs have influenced many companies. HPCC is not only de-

ployed in Alibaba cloud6, but also supported by many switch and NIC vendors (Intel, Mellanox,

Broadcom, Cisco, Innovium, Marvell, etc.); in addition, Alibaba, Intel, andMellanox are actively

writing an IETF draft of HPCC, with the latest version in September 20205. We have built a proto-

type of Sundial at Google and deployed it in a test cluster with >500 servers127 in mid 2020, and we

show performance improvements in Spanner77 and in Swift118 brought by Sundial. FlowRadar and

LossRadar also result in a joint patent with Barefoot/Intel, and Alibaba is very interested in using

the technique for loss detection. Finally, DETER’s Linux kernel-based implementation is open-

sourced, and we reveal several TCP problems when running large Spark and RPC systems in the

dissertation.
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2
HPCC: Robustly Achieving High

Performance in Congestion Control

2.1 Introduction

The link speed in datacenter networks has grown from 1Gbps to 100Gbps in the past decade, and

this growth is continuing. Ultra-low latency and high bandwidth, which are demanded by more and
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more applications, are two critical requirements in today’s and future high-speed networks.

Specifically, in major cloud providers in the world, there are two critical trends in datacenters

that drive the demand on high-speed networks. The first trend is new datacenter architectures like

resource disaggregation and heterogeneous computing. In resource disaggregation, CPUs need

high-speed networking with remote resources like GPU, memory, and disk. According to a recent

study87, resource disaggregation requires 3-5μs network latency and 40-100Gbps network band-

width to maintain good application-level performance. In heterogeneous computing environments,

different computing chips, e.g., CPU, FPGA, and GPU, also need high-speed interconnections,

and the lower the latency, the better. The second trend is new applications like storage on high I/O

speed media, e.g., NVMe (non-volatile memory express) and large-scale machine learning training

on high computation speed devices, e.g., GPU and ASIC. These applications periodically transfer

large volume of data, and their performance bottleneck is usually in the network since their storage

and computation speeds are very fast.

Given that traditional software-based network stacks in hosts can no longer sustain the critical

latency and bandwidth requirements188, offloading network stacks into hardware is an inevitable di-

rection in high-speed networks. In recent years, major cloud provider such as Alibaba andMicrosoft

deployed large-scale networks with RDMA (remote direct memory access) over Converged Ethernet

Version 2 (RoCEv2) in datacenters as the hardware-offloading solution.

Unfortunately, according to our study at Alibaba’s large-scale RoCEv2 networks, we find that

RDMA networks face fundamental challenges to reconcile low latency, high bandwidth utilization,

and high stability. This is because high speed implies that flows start at line rate and aggressively

grab available network capacity, which can easily cause severe congestion in large-scale networks. In

addition, high throughput usually results in deep packet queueing, which undermines the perfor-

mance of latency-sensitive flows and the ability of the network to handle unexpected congestion.

We highlight two representative cases among the many encountered in practice to demonstrate the
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difficulty:

Case-1: PFC (priority flow control) storms. A cloud storage (test) cluster with RDMA once

encountered a network-wide, large-amplitude traffic drop due to a long-lasting PFC storm. This

was triggered by a large incast event together with a vendor bug which caused the switch to keep

sending PFC pause frames indefinitely. Because incast events and congestion are the norms in this

type of cluster, and the operators are not sure whether there will be other vendor bugs that create

PFC storms, the operators decided to try our best to prevent any PFC pauses. Therefore, they tuned

the CC algorithm to reduce rates quickly and increase rates conservatively to avoid triggering PFC

pauses. They did get fewer PFC pauses (lower risk), but the average link utilization in the network

was very low (higher cost).

Case-2: Surprisingly long latency. Amachine learning (ML) application complained about

>100μs average latency for short messages; its expectation was a tail latency of <50μs with RDMA.

The reason for the long latency, which finally dug out, was the in-network queues occupied majorly

by a cloud storage system that is bandwidth-intensive in the same cluster. As a result, the operators

have to separate the two applications by deploying the ML application to a new cluster. The new

cluster had low utilization (higher cost) given that the ML application is not very bandwidth hun-

gry.

To address the difficulty to reconcile latency, bandwidth/utilization, and stability, we believe a

good design of CC is the key. This is because CC is the primary mechanism to avoid packet buffer-

ing or loss under high traffic loads. If CC fails frequently, backup methods like PFC or packet re-

transmissions can either introduce stability concerns or suffer a large performance penalty. Un-

fortunately, we found state-of-art CCmechanisms in RDMA networks, such as DCQCN188 and

TIMELY142, have some essential limitations:

Slow convergence. CC continuously observes network states (based on feedback signals such as

ECN or RTT) and make rate adjustments accordingly. With existing coarse-grained signals, current
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CC schemes do not know exactly howmuch to increase or decrease sending rates to match the bot-

tleneck capacity, and do not know what the network states will be after the rate adjustment. There-

fore, they use heuristics to guess the rate adjustment and try to iteratively converge to a stable rate

distribution, in a trial-and-error manner. Such iterative methods are slow for handling large-scale

congestion events106, as we can see in Case-1.

Persistent packet queueing. The slow convergence forces CC to keep persistent packet queueing

to avoid bandwidth waste. If the queue is zero or small, when some bandwidth is freed (e.g., when

some flows finish), CC takes a long time to ramp up the running flows to fully utilize the band-

width. Such bandwidth waste is especially severe in production where traffic is highly dynamic—

flows start and finish frequently. To avoid wasting bandwidth, CC has to persistently maintain

queues, which occupy the bandwidth released by finished flows before the remaining flows ramp

up. The higher the queues are, the higher bandwidth can be utilized, but with the consequence of

higher latency. This is exactly the issue met by the ML application at the beginning in Case-2.

Complicated parameter tuning. The above problems entail that CC cannot robustly deliver high

throughput and low latency under various network environments, especially under dynamic traffic

patterns. So CC algorithms employ many heuristics for handling different environments and traffic

patterns, which have many parameters. For instance, DCQCN has 15 parameters to set up. As a

result, operators usually face a complex and time-consuming parameter tuning stage in daily RDMA

network operations, which significantly increases the risk of incorrect settings that cause instability

or poor performance.

The fundamental cause of the preceding three limitations is that CC cannot robustly ramp up or

ramp down rates to match the capacity immediately. This is unavoidable because of the gap between

the network states CC observes (ECN or RTT) and the control knob of CC (sending rate): there

is no way to tell the exact rate adjustment given the observed states, and no way to predict exactly

how states will change after the adjustment. However, this situation has recently changed. With
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In-network telemetry (INT) features that have become available in new switching ASICs46,48,47, ob-

taining fine-grained network states and using it to improve CC has become possible in production

networks.

In this paper, we propose a new CC scheme, HPCC (High Precision Congestion Control),

for large-scale, high-speed networks. The key idea of HPCC is to close the gap between observa-

tion and control by using the number of inflight bytes for both of them, so HPCC can converge to

high bandwidth utilization with zero queueing in one RTT in most cases. To realize the design, we

leverage the switches to provide fine-grained information via INT, and compute the number of in-

flight bytes on the hosts. This addresses the three limitations in current CC schemes. First, HPCC

senders can quickly ramp up or ramp down flow rates to match the link capacity, in just one RTT

under most circumstances. Second, HPCC can maintain near-zero queues—it does not need per-

sistent queues to avoid bandwidth waste, because it can grab the free bandwidth in just one RTT (a

few microseconds). Finally, since the sending rates can quickly adapt to the traffic dynamics, HPCC

requires merely 3 independent parameters that are used to tune fairness and efficiency.

During the design of HPCC, we face two main challenges. First, the feedback can be delayed by

link congestion, which can defer the flow rate reduction for resolving the congestion. This leads

to our decision of controlling inflight bytes, as opposed to controlling the rate in DCQCN and

TIMELY, because it prevents senders from sending extra traffic even if the feedback gets delayed.

To observe the number of inflight bytes going through the bottleneck, which cannot be directly re-

ported by switches, we let hosts calculate it based on INT information. Second, despite that INT in-

formation is in all the ACK packets, there can be destructive overreactions if a sender blindly reacts

to all the information for fast reaction (§2.3.2). Our CC algorithm selectively uses INT information

by combining per-ACK and per-RTT reactions, achieving fast reaction without overreaction.

HPCCmeets our goals of achieving ultra-low latency, high bandwidth, and high stability simul-

taneously in large-scale high-speed networks. In addition, HPCC also has the following essential
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properties for being practical: (i)Deployment ready: It merely requires standard INT features (with

a trivial and optional extension for efficiency) in switches and is friendly to implementation in NIC

hardware. (ii) Fairness: It separates efficiency and fairness control. It uses multiplicative increase and

decrease to converge quickly to the proper rate on each link, ensuring efficiency and stability, while

it uses additive increase to move towards fairness for long flows.

HPCC’s stability and fairness are guaranteed in theory (§2.4). We implement HPCC on com-

modity NIC with FPGA and commodity switching ASIC with P4 programmability. With testbed

experiments and large-scale simulations, we show that compared with DCQCN, TIMELY, and

other alternatives, HPCC reacts faster to available bandwidth and congestion and maintains close-

to-zero queues. In our 32-server testbed, even under 50% traffic load, HPCC keeps the queue size

zero at the median and 22.9KB (only 7.3μs queueing delay) at the 99-th percentile , which results in

a 95% reduction in the 99-th percentile latency compared to DCQCNwithout sacrificing through-

put. In our 320-server simulation, even under incast events where PFC storms happen frequently

with DCQCN and TIMELY, PFC pauses are not triggered with HPCC.

Note that despite HPCC having been designed from the experiences with RDMA networks,

we believe its insights and designs are also suitable for other high-speed networking solutions in

general.

2.2 Experience and Motivation

In this section, we present our study at Alibaba’s production datacenter networks that demonstrate

the difficulty to operate large-scale, high-speed RDMA networks due to current CC schemes’ limi-

tations. We also propose some key directions and requirements for the next-generation CC of high-

speed networks.
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2.2.1 Large RDMADeployments in Alibaba

Alibaba adopts RDMA in datacenters for ultra-low latency and large bandwidth demanded by mul-

tiple critical applications, such as distributed storage, database, and deep learning training frame-

works.

The datacenter network is a Clos topology with three layers—ToR, Agg, and Core switches.

A PoD (point-of-delivery), which consists of tens of ToR switches that are interconnected by a

number of Agg switches, is a basic deployment unit. Different PoDs are interconnected by Core

switches. Each server has two uplinks connected with two ToR switches for high availability of

servers, as required by the customers. In the current RDMA deployment, each PoD is an indepen-

dent RDMA domain, which means that only servers within the same PoD can communicate with

RDMA.

Alibaba uses the latest production-ready version of RoCEv2: DCQCN is used as the congestion

control (CC) solution which is integrated into hardware by RDMANIC vendors. PFC22 is enabled

in NICs and switches for lossless network requirements. The strategy to recover from packet loss

is “go-back-N”, which means a NACKwill be sent from receiver to sender if the former finds a lost

packet, and the sender will resend all packets starting from the lost packet.

There have been tens of thousands of servers supporting RDMA, carrying Alibaba’s databases,

cloud storage, data analysis systems, HPC, and machine learning applications in production. Ap-

plications have reported impressive improvements by adopting RDMA. For instance, distributed

machine learning training has been accelerated by 100+ times compared with the TCP/IP version,

and the I/O speed of SSD-based cloud storage has been boosted by about 50 times compared to the

TCP/IP version. These improvements majorly stem from the hardware offloading characteristic of

RDMA.
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Figure 2.1: The impacts of PFC pauses in producঞon.

2.2.2 Goals for RDMANetworks

Besides ultra-low latency and high bandwidth, network stability and operational complexity are

also critical in RDMA networks, because RDMA networks face more risks and tighter performance

requirements than TCP/IP networks.

First of all, RDMA hosts are aggressive for resources. They start sending at line rate, which makes

common problems like incast much more severe than TCP/IP. The high risk of congestion also

means a high risk to trigger PFC pauses.

Second, PFC has the potential for large and destructive impacts on networks. PFC pauses all

upstream interfaces once it detects a risk of packet loss, and the pauses can propagate via a tree-

like graph to multiple hops away. Such spreading of congestion can possibly trigger PFC dead-

locks95,101,161 and PFC storms (Case-1 in §2.1) that can silence a lot of senders even if the network

has free capacity. Despite the probability of PFC deadlocks and storms being fairly small, they are

still big threats to operators and applications, since currently there are no methods to guarantee they

won’t occur101.

Third, even in normal cases, PFC can still suppress a large number of innocent senders. For in-

stance, by monitoring the propagation graph of each PFC pause in a PoD, we can see that about

10% of PFC events propagate three hops (Figure 2.1a), which means the whole PoD is impacted
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due to a single or a small number of senders. Figure 2.1b shows that more than 10% PFC pauses

suppress more than 3% of the total network capacity of a datacenter, and in the worst case the ca-

pacity loss can be 25%! Again, we can see that the 25% capacity loss is rare, but it is still a threat that

operators have to plan for.

Finally, operational complexity is an important factor that is previously neglected. Because of

the high-performance requirement and stability risks, it often takes months to tune the parameters

for RDMA before actual deployment, in order to find a good balance. Moreover, because different

applications have different traffic patterns, and different environments have different topologies, link

speeds, and switch buffer sizes, operators have to tune parameters for the deployment of each new

application and new environment.

Therefore, we have four essential goals for the RDMA networks: (i) latency should be as low as

possible; (ii) bandwidth/utilization should be as high as possible; (iii) congestion and PFC pauses

should be as few as possible; (iv) the operational complexity should be as low as possible. Achieving

the four goals will provide huge value to the customers and the cloud provider, and we believe the

key to achieving them is a proper CC scheme.

2.2.3 Tradeoffs in Current RDMA CC

DCQCN is the default CC in the RDMA networks. It leverages ECN to discover congestion risk

and reacts quickly. It also allows hosts to begin transmitting aggressively at line rate and to increase

their rates quickly after transient congestion (e.g., FastRecovery188). Nonetheless, its effectiveness

depends on whether its parameters are suitable for specific traffic patterns and network environ-

ments.

In practice, operators always struggle to balance two tradeoffs in DCQCN configurations: through-

put v.s. stability, e.g., Case-1 in §2.1, and bandwidth v.s. latency, e.g., Case-2 in §2.1. To make it
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Figure 2.2: FCT slowdown and PFC pauses with different rate increasing ঞmers in DCQCN, usingWebSearch.

concrete, since we cannot directly change configurations in production, we highlight the two trade-

offs with experiments on a testbed that has similar hardware/software environments but a smaller

topology compared to production networks. The testbed is a PoD with 230 servers (each has two

25Gbps uplinks), 16 ToR switches, and 8 Agg switches connected by 100Gbps links. We use public

traffic workloads, e.g.,WebSearch57 and FB_Hadoop156 for reproducibility.

Throughput vs. Stability It is hard to achieve high throughput without harming the network’s

stability in one DCQCN configuration. To quickly utilize free capacity, senders must have high sen-

sitivity to available bandwidth and increase flow rates fast, while such aggressive behavior can easily

trigger buffer overflows and traffic oscillations in the network, resulting in large-scale PFC pauses.

For example, Figure 2.2 approximately shows the issue in Case-1 of §2.1. Figure 2.2a shows the FCT

(flow completion time) slowdown∗ at 95-th percentile under different DCQCN rate-increasing

timers (Ti) and rate-decreasing timers (Td) with 30% average network load fromWebSearch. Setting

Ti = 55μs, Td = 50μs is fromDCQCN’s original paper; Ti = 300μs, Td = 4μs is a vendor’s

default; and Ti = 900μs, Td = 4μs is a more conservative version from Alibaba. Figure 2.2a shows

that smaller (Ti) and larger (Td) reduce the FCT slowdown because they make senders more ag-

∗“FCT slowdown” means a flow’s actual FCT normalized by its ideal FCT when the network only has
this flow.
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Figure 2.3: 95-th percenঞle FCT slowdown distribuঞon with different ECN thresholds, usingWebSearch.

gressive to detect and utilize available bandwidth. However, smaller Ti and larger Td is more likely

to have more and longer PFC pauses compared to more conservative timer settings during incast

events. Figure 2.2b shows the PFC pause duration and 95-th percentile latency of short flows when

there are incast events whose total load is 2% of the network’s total capacity. Each incast event is

from 60 senders to 1 receiver. We can see that smaller (Ti) and larger (Td) suffer from longer PFC

pause durations and larger tail latencies of flows. We also have tried out different DCQCN parame-

ters, different average link loads, and different traffic traces, all of which draw the same conclusion.

Bandwidth vs. Latency Though “high bandwidth and low latency” has become a “catchphrase”

of RDMA, we find it is practically hard to achieve them simultaneously. This is because for con-

sistently low latency the network needs to maintain steadily small queues (which means low ECN

marking thresholds), while the bandwidth cannot be highly utilized if queues are too small because

of the bandwidth waste under dynamic traffic, as discussed in §2.1. For example, Figure 2.3 approx-

imately shows the issue in Case-2 of §2.1. It shows the FCT slowdown with different ECNmarking

thresholds (Kmin,Kmax) in switches andWebSearch as input traffic loads. Figure 2.3a shows that

when we use low ECN thresholds, small flows which are latency-sensitive have lower FCT, while

big flows which are bandwidth-sensitive suffer from larger FCT. The trend is more obvious when

the network load is higher (Figure 2.3b when the average link load is 50%). For instance, the 95-th
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percentile RTT is about 150μs—30 (slowdown)× 5μs (baseline RTT)—whenKmin = 400KB,

Kmax = 1600KB, which is a lot worse than the ML application’s requirement (<50μs) in Case-2.

We have tried out different DCQCN parameters, different average link loads, and different traffic

traces, and the tradeoff between bandwidth and latency remains.

As mentioned in §2.1, network administrators are usually forced to sacrifice utilization (or money)

to achieve latency and stability. The unsatisfactory outcome made us rethink about the fundamen-

tal reasons for the tight tensions among latency, bandwidth, and stability. Essentially, as the first

generation of CC for RDMA designed more than 5 years ago, DCQCN has several design issues

due to the limitations of hardware when it was proposed, which results in the challenges to network

operations. For instance, with ECN-based observation, it cannot robustly adjust the sending rate, so

it is either too aggressive causing instability or too conservative causing low throughput. Also, it has

to maintain persistent queues to avoid bandwidth waste, because it cannot robustly ramp up rate to

grab available bandwidth with just ECN information. Other than the preceding two tradeoffs, the

timer-based scheduling can also trigger traffic oscillations during link failures; the queue-based feed-

back also creates a new tradeoff between ECN threshold and PFC threshold. We omit the details

due to space limit.

Further, though we have less production experience with TIMELY, Microsoft reports that

TIMELY’s performance is comparable to or worse than DCQCN189, which is also validated in

§2.6.3.

2.2.4 Next Generation of High-speed CC

We advocate that the next generation of CC for RDMA or other types of high-speed networks

should have the following properties simultaneously to make a significant improvement on both

application performance and network stability:
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(i) Fast and robust convergence. The network can quickly converge to high utilization while avoid-

ing congestion. The timing and amount of traffic adjustments should be adaptive to specific traffic

patterns and network environments rather than manually configured.

(ii) Close-to-empty queue. The queue sizes of in-network buffers are maintained steadily low,

close-to-zero.

(iii) Few parameters. The new CC should not rely on lots of parameters that require the oper-

ators to tune. Instead, it should adapt to the environment and traffic pattern itself, so that it can

reduce the operational complexity.

(iv) Fairness. The new CC ensures fairness among flows.

(v) Easy to deploy on hardware. The new CC algorithm is simple enough to be implemented on

commodity NIC hardware and commodity switch hardware.

Nowadays, we have seen two critical trends that have the potential to realize a CC which satis-

fies all of the preceding requirements. The first trend is that switches are more open and flexible

in the data plane. Especially, in-network telemetry (INT) is being popularized quickly. Almost all

the switch vendors we know have INT feature enabled already in their new products (e.g., Barefoot

Tofino46, Broadcom Tomahawk347, Broadcom Trident348, etc.). With INT, a sender can know ex-

actly loads of the links along a flow’s path from an ACK packet, which facilitates the sender to make

accurate flow rate adjustments. The second trend is that NIC hardware is becoming more capable

and programmable. They have faster speed and more resources to expose packet-level events and

processing. With these new hardware features, we design and implement HPCC, which achieves the

desired CC properties simultaneously.
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2.3 Design

The key idea of HPCC is to use the number of inflight bytes for both observation and control. This

direct mapping between observation and control closes the gap between them, in contrast to ex-

isting CC schemes188,142,57,109,83, so HPCC can converge to high bandwidth utilization with zero

queueing in one RTT for each bottleneck link. To realize the design, we leverage the switches to

provide fine-grained load information, such as queue size and accumulated tx traffic, and compute

the number of inflight bytes on the hosts.

During our design, we face two major challenges. First, in existing pure rate-based CC schemes

(DCQCN and TIMELY), during congestion, feedback signals can be delayed, causing a high rate

to persist for a long time. This results in much more inflight data from each sender than needed to

sustain high utilization; as our experiment in §2.2.3 shows, each sender can have significantly more

inflight data than the BDP (Bandwidth-delay product)†. To avoid this problem, HPCC directly

controls the number of inflight bytes as opposed to rate, so even if feedback signals are delayed, the

senders do not send excessive packets because the total inflight bytes are limited. Consequently, we

also derive a new way to measure the number of inflight bytes passing the bottleneck based on INT.

Second, while a HPCC sender can react to network load information in each ACK, it must carefully

navigate the tension between reacting quickly and overreacting to congestion feedback. We combine

RTT-based and ACK-based reactions to overcome this tension.

2.3.1 HPCC Framework

HPCC is a sender-driven CC framework. As shown in Figure 2.4, each packet a sender sends will be

acknowledged by the receiver. During the propagation of the packet from the sender to the receiver,

†In Figure 2.2b, the PFC being propagated to hosts means at least 3 switches (intra-PoD) has reached
the PFC threshold. So the inflight bytes is at least 11×BDP per flow on average, calculated based on the
datacenter specification and the incast ratio.
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Figure 2.4: The overview of HPCC framework.

each switch along the path leverages the INT feature of its switching ASIC to insert some meta-

data that reports the current load of the packet’s egress port, including timestamp (ts), queue length

(qLen), transmitted bytes (txBytes), and the link bandwidth capacity (B).

When the receiver gets the packet, it copies all the meta-data recorded by the switches to the ACK

message it sends back to the sender. The sender decides how to adjust its flow rate each time it re-

ceives an ACKwith network load information.

2.3.2 CC Based on Inflight Bytes

HPCC controls the number of inflight bytes. The inflight bytes mean the amount of data that have

been sent, but not acknowledged at the sender yet.

Controlling inflight bytes has an important advantage compared to controlling rates. In the ab-

sence of congestion, the inflight bytes and rate are interchangeable with equation inflight = rate×T

where T is the base propagation RTT. However, controlling inflight bytes greatly improves the tol-

erance to delayed feedback during congestion. Compared to a pure rate-based CC scheme which

continuously sends packets before feedback comes, the control on the inflight bytes ensures the

number of inflight bytes is within a limit, making senders immediately stop sending when the limit

is reached, no matter how long the feedback gets delayed. As a result, the whole network is greatly

stabilized.
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Senders control inflight bytes with sending windows. Each sender maintains a sending win-

dow, which limits the inflight bytes it can send. Using a window is a standard idea in TCP, but the

benefits for tolerance to feedback delays are substantial in datacenters, because the queueing delay

(hence the feedback delay) can be orders of magnitude higher than the ultra-low base RTT107. The

initial sending window size should be set so that flows can start at the line rate, so we useWinit =

BNIC × T, where BNIC is the NIC bandwidth.

In addition to the window, we also pace the packet sending rate to avoid bursty traffic. Packet

pacer is generally available in NICs188. The pacing rate isR = W
T , which is the rate that a window

sizeW can achieve in a network with base RTT T.

Observing congestion based on inflight bytes. Since the control knob is the number of inflight

bytes, we observe congestion based on inflight bytes—such a direct mapping between observation

and control enables one-RTT convergence for each bottleneck link.

For a link, we need to know the total inflight bytes of all flows traversing it. Assume a link’s band-

width is B, and the i-th flow traversing it has a window sizeWi. The number of inflight bytes for

this link is I =
∑

Wi.

If I < B × T, we have
∑ Wi

T < B. Wi
T is the throughput that flow i achieves if there is no

congestion. So in this case, the total throughput of all these flows is lower than the link bandwidth.

If I ≥ B × T, we have
∑ Wi

T ≥ B. In this case, there must be congestion (otherwise, the total

throughput would exceed the link capacity which is impossible), and queues form. The congestion

can be on this link, or somewhere else if there are multiple bottlenecks.

So our goal is to control I to be slightly smaller than B × T for every link, such that there is no

queue and bandwidth is highly utilized.

Estimating the number of inflight bytes for each link. The first question is how a sender uses INT

information to estimate Ij for each link j on its path. Specifically, the inflight bytes consist of data

packets in the queues and in the pipeline. So for each link j, we estimate Ij using its queue length
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(qlen) and its output rate (txRate), as in Eqn. (2.1):

Ij = qlen+ txRate× T (2.1)

where qlen is directly from INT. txRate is calcualted with txBytes and ts:

txRate = ack1.txBytes−ack0.txBytes
ack1.ts−ack0.ts where ack1 and ack0 are two ACKs. txRate× T estimates the number

of bytes in the pipeline. Eqn. (2.1) assumes all flows have the same known base RTT. This is possible

in datacenters, where the RTT between most server pairs are very close due to the regularity of the

topology.‡

In the most common congestion scenario where there is one bottleneck j, Ij is the estimation of

the total inflight bytes of all flows traversing link j. In the case where some flows traverse multiple

bottlenecks, Ij is the lower bound of total inflight bytes.

Reacting to the observed number of inflight bytes. Each sender should adjust its window so that Ij

for each link j on its flow’s path is slightly lower than Bj × T—specifically, to be η × Bj × T (η is a

constant close to 1, e.g., 95%). Thus, for link j, each sender can multiplicatively adjust its window by

a factor of kj =
Ij

η×Bj×T = Uj/η, whereUj is the normalized number of inflight bytes of link j:

Uj =
Ij

Bj × T
=

qlenj + txRatej × T
Bj × T

=
qlenj
Bj × T

+
txRatej
Bj

(2.2)

Sender i should react to the most congested link:

Wi =
Wi

maxj(kj)
+WAI =

Wi

maxj(Uj)/η
+WAI (2.3)

whereWAI is an additive increase (AI) part to ensure fairness, which is very small. Note that the

first term in Eqn. (2.3) is anMIMD term. This decouples the utilization control from the fairness

‡Shorter RTT exists, such as within a rack, but we show it is not a problem in evaluation.
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control to ensure senders quickly grab free bandwidth or avoid congestion, which is inspired by

XCP109.

Note that if there are multiple bottlenecks, Eqn. (2.1) under-estimates the number of inflight

bytes, so HPCC needs multiple rounds of adjustments to resolve congestion, one round for each

bottleneck. However, during incast cases, which are the most common congestion cases in datacen-

ter162, there is only one bottleneck, so HPCC can resolve the congestion with only one round of

adjustment. Theoretical details are in §2.4.1.

Fast reaction without overreaction. With Eqn. (2.2) and Eqn. (2.3), an HPCC sender can react

with every ACK. Reacting to each ACK enables fast congestion avoidance, but it reacts multiple

times to ACKs describing the same packets and queues. Figure 2.5 shows an example of how react-

ing to each ACK causes overreaction. At the beginning, in Figure 2.5(a), there are three packets (P1,

P2 and P5) from sender S1 and two packets (P3 and P4) from sender S2 queued in an egress buffer

of a link. When P1 is dequeued, the buffer has 4 packets. So its ACK to S1 indicates qLen = 4 (Fig-
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ure 2.5(b)). Suppose S1 uses Eqn. (2.2) and Eqn. (2.3) to decideW(1) = W(0)/2, whereW(0) is

the window size of S1 in Figure 2.5(a). However, P2 also sees 4 packets when it is dequeued in Fig-

ure 2.5(b) and its ACK to S1 has qLen = 4 in Figure 2.5(c). If S1 blindly updates its window size

based on P2’s ACK, it ends up withW(2) = W(1)/2 = W(0)/4. This conservative window size

is an overreaction because P1 and P2’s ACKs report the link conditions for almost the same set of

packets.

One way to prevent overreaction is to make sure that the window is only adjusted when an ACK

that describes a brand new set of packets is received. For instance, in Figure 2.5(c), P7 is a packet

which is sent out from S1 after S1 gets the ACK of P1. Therefore, the packets P7 sees in any queue

are totally different from what P1 sees. In other words, the network status reported in P1’s and P7’s

ACKs have no overlap. Therefore, for avoiding overreaction, we always remember the first packet

(Q) sent right after the window is adjusted and only adjust the window again when the sender gets

Q’s ACK. However, the drawback of this strategy is that merely updating the window each RTT

might be too slow for handling urgent cases like failures and incasts (§2.6.4).

HPCC combines the per-ACK and per-RTT strategies to achieve fast reaction without over-

reaction. The key idea is to introduce a reference window sizeWc
i, a runtime state updated on a

per-RTT basis. Hence, only when receiving the ACK of the first packet sent with the currentWc
i,

we update it withWc
i = Wi, i.e., assigning the current window sizeWi to the reference window

sizeWc
i. WithWc

i, the sender can safely update its window size using Eqn. (2.4):

Wi =
Wc

i
maxj(Uj)/η

+WAI (2.4)

SinceWi is computed fromWc
i which is fixed in a RTT, the sender does not overreact to the

same network loads. For example, in the case of Figure 2.5, we haveW(2) = W(1) = W(0)/2 =

Wc/2 even if S1 recomputes window sizes on ACKs of both P1 and P2. Meanwhile, if the inflight
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bytes dramatically change within an RTT, the window size is still adjusted by Eqn. (2.4) becauseUj

is updated.

The overall workflow of the sender side CC algorithm. Algorithm 1 illustrates the overall pro-

cess of CC at the sender side for a single flow. Each newly received ACKmessage triggers the pro-

cedure NewACK at Line 21. At Line 22, the variable lastUpdateSeq is used to remember the first

packet sent with a newWc, and the sequence number in the incoming ACK should be larger than

lastUpdateSeq to trigger a new sync betweenWc andW (Line 14-15 and 18-19). The sender also

remembers the pacing rate and current INT information at Line 27. The sender computes a new

window sizeW at Line 23 or Line 26, depending on whether to updateWc, with functionMea-

sureInflight and ComputeWind.

FunctionMeasureInflight estimates normalized inflight bytes with Eqn. (2.2) at Line 5.

First, it computes txRate of each link from the current and last accumulated transferred bytes

txBytes and timestamp ts (Line 4). It also uses the minimum of the current and last qlen to filter

out noises in qlen (Line 5). The loop from Line 3 to 7 selects maxi(Ui) in Eqn. (2.3). Instead of di-

rectly using maxi(Ui), we use an EWMA (Exponentially WeightedMoving Average) to filter the

noises from timer inaccuracy and transient queues. (Line 9).

Function ComputeWind combines multiplicative increase/decrease (MI/MD) and additive in-

crease (AI) to balance the reaction speed and fairness. If a sender finds it should increase the window

size, it first tries AI formaxStage times with the stepWAI (Line 17). If it still finds room to increase

aftermaxStage times of AI or the normalized inflight bytes is above η, it calls Eqn. (2.4) once to

quickly ramp up or ramp down the window size (Line 12-13).
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Algorithm 1 Sender algorithm. ack.L is an array of link feedbacks in the ACK; each link ack.L[i]
has four fields: qlen, txBytes, ts, and B. L is the sender’s record of link feedbacks at the last update.

1: functionMeasureInflight(ack)
2: u = 0;
3: for each link i on the path do
4: txRate = ack.L[i].txBytes−L[i].txBytes

ack.L[i].ts−L[i].ts ;
5: u′ = min(ack.L[i].qlen,L[i].qlen)

ack.L[i].B·T + txRate
ack.L[i].B ;

6: if u′ > u then
7: u = u′; τ = ack.L[i].ts− L[i].ts;
8: τ = min(τ,T);
9: U = (1− τ

T) · U+ τ
T · u;

10: returnU;
11: functionComputeWind(U, updateWc)
12: if U >= η or incStage >= maxStage then
13: W = Wc

U/η +WAI;
14: if updateWc then
15: incStage = 0;Wc = W;
16: else
17: W = Wc +WAI;
18: if updateWc then
19: incStage++;Wc = W;
20: returnW;
21: procedureNewAck(ack)
22: if ack.seq>lastUpdateSeq then
23: W = ComputeWind(MeasureInflight(ack),True);
24: lastUpdateSeq = snd_nxt;
25: else
26: W = ComputeWind(MeasureInflight(ack), False);
27: R = W

T ; L = ack.L;
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2.3.3 Parameters of HPCC

HPCC has three easy-to-set parameters: η,maxStage, andWAI. η controls a simple tradeoff be-

tween utilization and transient queue length (due to the temporary collision of packets caused by

their random arrivals. See §2.4.3), so we set it to 95% by default, which only loses 5% bandwidth but

achieves almost zero queue. maxStage is not needed in theory (i.e.,maxStage = 0 works perfectly

fine, as shown in our simulation), although in our hardware implementation we setmaxStage = 5

to deal with the pacing imperfection due to a short of time for implementation. WAI controls the

tradeoff between the maximum number of concurrent flows on a link that can sustain near-zero

queues and the speed of convergence to fairness (§2.4.2). Normally we set a very smallWAI to sup-

port a large number of concurrent flows on a link, because slower fairness is not critical. A rule of

thumb is to setWAI =
Winit×(1−η)

N , whereN is the expected maximum number of concurrent flows

on a link. The intuition is that the total additive increase every round (N×WAI) should not exceed

the bandwidth headroom, and thus no queue forms. Even if the actual number of concurrent flows

on a link exceedsN, the CC is still stable and achieves full utilization, but just cannot maintain zero

queues. Note that none of the three parameters are reliability-critical.

2.3.4 Properties of HPCC

HPCC has fewer parameters and the tuning is simpler than previous CC schemes. Most pre-

vious CC schemes, such as DCQCN188, TIMELY142, and DCTCP57 which are productionized,

do not have precise feedback, so they have to use heuristics to infer the current network state. These

heuristics work differently in different environments, so they have parameters for operators to tune

for the environments. On the other hand, HPCC uses precise feedback to know the exact network

state, so HPCC does not need heuristics, and thus no need for the associated parameters.

For example, they heuristically maintain the equilibrium during steady states (i.e., there are a
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fixed number of flows). Specifically, the AI step andMD factor should be in a dynamic equilibrium.

The smaller AI step, the stabler equilibrium and slower fairness convergence, but once some flow

finishes, it takes a longer time to reclaim the free bandwidth. So operators have to carefully tune the

AI step to achieve a good tradeoff; DCQCN and TIMELY even have two parameters for AI steps.

In contrast, HPCC reclaims bandwidth throughMI, enabled by the precise link load information,

so the AI step can be small and is easy to set.

For the MD factor, they use EWMA to gradually find out the right value. Average over longer

terms give more precise MD factor and thus stabler equilibrium, but once more flows join, it takes

a longer time to resolve the congestion. So operators have to also carefully tune α (the parame-

ter that controls the weight of new feedback). In contrast, HPCC directly knows the MD factor

(Eqn. (2.3)), so it does not have this parameter. Note that the EWMA in HPCC is parameterless:

the weights of new ACKs are automatically scaled with inter-packet time gaps.

There are also CC schemes that use fine-grained feedback, such as XCP109 and RCP83. How-

ever, they use heuristic combinations of different types of feedback, so they have scaling parameters

to tune their relative significance. The next bullet elaborates on this.

Advantages over CC schemes that also use fine-grained feedback from switches. XCP and

RCP109,83 combines rxRate and qlen from switches to observe congestion, which may seem simi-

lar to HPCC’s use of txRate and qlen. The key difference is that using txRate in Eqn. (2.3) allows

HPCC to accurately estimate the amount of inflight bytes, which closes the gap between observa-

tion and control and enables one-RTT convergence for each bottleneck. In XCP and RCP, their

combination of rxRate and qlen has no concrete physical meaning, so they still have the gap be-

tween observation and control: one cannot predict exactly how rxRate and qlenwill change after

adjusting the window or rate, so they still take multiple rounds to converge. In fact, rxRate and qlen

overlap in terms of the congestion that they measure: a high rxRate increases the queue occupancy,

which implies a large qlen. Therefore XCP and RCP require scaling parameters (α and β) to tune
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Figure 2.6: Comparison of txRate and rxRate.

the weight of rxRate and qlen, complicating the tuning process.

Viewed from another perspective, as first observed in ABC93, using txRate improves the accuracy

of the feedback signal in a window-based CC scheme like HPCC. The reason is that the txRate at

a switch queue reflects the rxRate at that queue one RTT in the future, since packet transmissions

from senders are clocked by acknowledgments in a window-based scheme. Therefore, by adjusting

the window size based on txRate, the senders can anticipate what the extent of congestion will be

one RTT after the measurement is taken at the switch, and react more accurately compared to when

using rxRate.

We perform a simple experiment to compare the use of txRate and rxRate. We use HPCC and

HPCC-rxRate (replacing txRatewith rxRate in all calculations) in a simple 2-to-1 congestion sce-

nario. Figure 2.6 shows the queue length over time. We can see that using rxRate has oscillation

before it finally converges, which is a result of the aforementioned problems. On the other hand,

using txRate gracefully converges without oscillation.

2.4 Theoretical Analysis of HPCC

For simple models of a system with arbitrary network topology and with multiple bottleneck links,

we prove that HPCC has rapid convergence to a Pareto optimal rate allocation (§2.4.1), followed by
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a slower convergence to fairness (§2.4.2). We also derive theoretical understanding of the queueing

delay (§2.4.3) and the importance of limiting inflight bytes (§2.4.4).

2.4.1 Fast Convergence of Utilization

Next we consider how quickly loads on the resources can be brought back under control following a

perturbation (perhaps caused by a new source or sources starting).

We begin with a very simple discrete time model, where sources all share the same RTT and rates

at sources are updated synchronously once per RTT. First note that if there is a single bottleneck

resource then we could achieve the target utilization (η) in one RTTwith the updateR(t+RTT) =

R(t)(Utarget/U)whereU is the observed utilization (it is simpler to work with rates rather than

windows in the analysis since rates and capacity constraints have the same units and fairness is tradi-

tionally defined with respect to rates).

Now suppose there are resources i = 1, 2, · · · , I and paths j = 1, 2, · · · , J. Let A be the incidence

matrix defined by Aij = 1 if resource i is used by path j and Aij = 0 otherwise; assume each path

uses at least one resource, so that no column of A is identically zero. Let Ci > 0 be the (target)

capacity of resource i, for i = 1, 2, · · · , I, and define the vector C = (Ci, i = 1, 2, · · · , I). A rate

allocation is a vectorR = (Rj, j = 1, 2, · · · , J). Let Yi be the load on resource i and let Y = (Yi, i =

1, 2, · · · , I). From the definition of the matrix Awe have that Y = AR. Say thatR is feasible if the

vector inequality Y ≤ C is satisfied, so that the load on each resource is not greater than the (target)

capacity of the resource.

Suppose the initial stateR(0) hasRj(0) > 0 for j = 1, 2, · · · , J and suppose rates are updated in

discrete time by the recursions

Y(n) = AR(n) (2.5)

Rj(n+ 1) =
Rj(n)

maxi{Yi(n)Aij/Ci}
. (2.6)
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Lemma

(i) Y(n) ≤ C for n = 1, 2, · · ·; hence after one step rates are all feasible.

(ii)R(n + 1) ≥ R(n) for n = 1, 2, · · ·; hence after the first step rates are either constant or

increase.

(iii)R(n) = R for n = I, I+ 1, · · ·whereR is Pareto optimal; hence after at most I stepsR(n) is

constant and is then Pareto optimal.

Proof

Yi(n+ 1) =
∑
j
Aij

Rj(n)
maxk{Yk(n)Akj/Ck}

≤
∑
j
Aij

Rj(n)
{Yi(n)/Ci}

= Ci,

and so rates are feasible for n ≥ 1. Also max{Yi(n)/Ci} ≤ 1 for n = 1, 2, · · ·, and hence after the

first step rates are non-decreasing. Furthermore if k = argmax{Yi(0)/Ci} then after one time step

Yk(1) = Ck—the resource k is bottlenecked. Thereafter the rates on paths through the bottlenecked

resource k remain unchanged. We can remove resource k from the network, together with all paths

through it. At each subsequent step at least one more resource becomes bottlenecked and can be

removed. After at most I steps either all resources are bottlenecked or all paths have been removed.

At the resulting rate allocationR all paths pass through at least one bottleneck, and so no path can

have its rate increased without decreasing the rate of another path: hence the rate allocationR is

Pareto optimal.

The recursions Eqn. (2.5)-(2.6) thus give convergence to feasibility after just one RTT and fast

convergence to a Pareto optimal allocationR(n) = R. However the allocation will not in general be

fair, and indeedRwill in general depend on the initial stateR(0). Next we consider how an additive

increase term encourages convergence to a form of fairness.

40



2.4.2 Additive Increase and Fairness

Consider a network with multiple resources where RTTs vary and updates are asynchronous. For

a given source letUi be the utilization at resource i observed by the source and letU = maxi{Ui}

where the maximum is over the resources on the path associated with the source. Suppose the rate at

the source is updated once per RTT by

R(t+ RTT) = R(t)
Utarget

U(t+ RTT)
+ a

where a > 0 is a small additive increase. (In this sub-section we useR for the rate from a typical

source, rather than the vector giving the rates over all sources.) Then at an equilibrium point (where

U(t) = U andR(t) = R do not vary with time for any of the sources) we have that

U = max
i
{Ui}, R = a

(
1−

Utarget

U

)−1
.

LetU(1) be the equilibrium utilization at the most congested bottleneck (i.e. the resource for

whichUi is highest), and letR(1) be the equilibrium rate on paths through this bottleneck. LetU(2)

be the equilibrium utilization at the next most congested bottleneck, and letR(2) be the equilibrium

rate on paths which pass through this as their most congested bottleneck. Similarly defineU(i),R(i)

for i = 3, 4, · · ·. ThusR(1) ≤ R(2) ≤ · · ·. Then, by recursion of the above analysis,

R(i) = a
(
1−

Utarget

U(i)

)−1
.

Thus

U(i) = Utarget

(
1− a

R(i)

)−1

confirming thatU(1) ≥ U(2) ≥ · · ·. Observe that the equilibrium utilizations are aboveUtarget by
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an amount that increases with a. The highest utilizationU(1) will be less than 100% if a < R(1)(1 −

Utarget). For example, ifUtarget = 95% then a should be less than 5% of the flow rateR(1).

There is a tradeoff in the choice of the additive increase a: smaller values of awill produce smaller

fluctuations about the equilibrium, but at the cost of slower convergence to the equilbrium. If a is

small enough the rates will be approximately max-min fair.

Next consider the impact of stochastic fluctuations in the observed utilizations and hence in the

rates. The distribution of maxi{Ui}will depend mainly on the most congested link but will be bi-

ased upwards by other congested links on the path. The rates achieved along different paths will be

biased away frommax-min fairness towards proportional fairness. This is not of itself a major prob-

lem: relative to max-min fairness, rate allocations under proportional fairness give an improvement

of utilization across multiple resources (since the absolute priority max-min fairness gives to smaller

flows can cause starvation at some resources66).

With more registers at sources we can exercise more control over the form of fairness achieved,

as we now briefly describe. Suppose a source maintains a distinct registerRi for each resource on its

path, updated by

Ri(t+ RTT) = Ri(t)
Utarget

Ui(t+ RTT)
+ a

whereUi(t + RTT) is the utilization at resource i observed by the source over the preceding RTT

and again a > 0 is a small additive increase. Update the rateR of the source by

R =

(∑
i
R−α
i

)−1/α

(2.7)

where α ∈ (0,∞) is a fixed parameter.

At an equilibrium point

Ri = a
(
1−

Utarget

Ui

)−1
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andR is given by Eqn. (2.7). Here we interpretRi as the rate which would be allocated to a source

whose path went through just one resource, resource i, and then rateR is the α-fair rate allocation.

Note that as α → ∞ the expression (2.7) approaches mini{Ri} corresponding to max-min fairness.

The case α = 1 corresponds to proportional fairness. The case α → 0 approaches the rate allocation

which maximizes the sum of the rates over all sources113.

2.4.3 Bounding Queueing Delays

To achieve ultra-low latency at the queues within the network we control the windows of sources to

keep the utilization of resources around a target utilization of less than 100%, and each source paces

packet transmissions so that the time between two packets entering the network is the reciprocal of

the source’s pacing rate.

With a fixed number of long flows the natural model for a queue at a resource is then a
∑

Di/D/1

queue, a deterministic server with an arrival process that is a heterogeneous mix of periodic sources.

This model has been analyzed extensively149,155. A superposition of homogeneous streams yields

the greatest buffer requirement for a given load, and a Brownian bridge approximation is accurate

in heavy traffic. As an example of the numerical results, if the load is 95% of capacity and there are

50 sources then the mean number of packets in the queues is about 3 and the probability there are

more than 20 packets in the queue is about 10−9. Even if the load is 100% the mean number of

packets in the queue is only about (πN/8)0.5 where N is the number of streams (and thus less than

5 with 50 sources; note that since sources are periodic, the queue remains stable even at 100% load).

In practice the arrival process at a resource is likely to be more variable than a heterogeneous mix

of periodic sources, even with just a fixed number of long flows. Nonetheless we expect little queue-

ing unless the load on the queue exceeds 100%. Conversely, if more than a small number of packets

are queued then it is almost certainly because the load on the resource exceeds its capacity.
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The stability analysis of XCP and RCP64 aims for 100% utilization, and requires feedback based

on queue size, as well as rate mismatch, to shrink an otherwise persistent queue. This complicates

the stability analysis, which is available for only a single congested resource. When the target uti-

lization is less than 100%, feedback based on queue size is not particularly helpful for steady state

stability; and the stability analysis for systems using just feedback based on rate mismatch can be

simplified and extended to a network with multiple resources and RTTs112.

In HPCC, measurement of queue size is essential for dealing rapidly with transient overloads.

New sources are allowed to start transmitting at line rate (to allow short flows to finish quickly), and

this may cause queue lengths to grow rapidly especially for incasts. The interaction of window limits

with the queueing term qlen in the algorithm is designed to drain queues rapidly (§2.4.4).

2.4.4 Importance of Limiting Inflight Bytes

Since the earliest days of packet-switching the importance of controlling the number of inflight

packets traversing the network has been understood78 and congestion control in TCPmakes ex-

plicit use of window flow control103. In our algorithm we also limit the number of inflight packets a

source has. We illustrate the benefit in this subsection.

We suppose that a source limits its transmissions so that at any time the source has no more pack-

ets unacknowledged than its window limit. If an update indicates congestion, then the window

limit decreases, so the source may be restricted from transmitting if acknowledgements are slow in

returning to the source.

As an example, suppose a new source starts transmitting at line rate. Then it can continue to do

so for the first RTT: if after this acknowledgements start returning at line rate then the window limit

will not restrict the source. So if a new source transmitting at line rate does not observe congestion,

then it can continue at line rate.
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As a second example, suppose a set of 64 new sources begin transmitting together, each at line

rate, and that the paths used by the sources converge on an intree to a single root queue which was

already busy at its target utilization. Further suppose the 64 new sources continue to transmit at

line rate for one base RTT - their initial burst. This is a very stressful case: the queueing time at

the root of the intree will build up to nearly 64 times the base RTT of the new sources by the time

the last packets of the initial bursts arrive at the root queue. But after the first acknowledgements

start arriving at the new sources their windows will decrease rapidly, since these acknowledgements

carry early news of the queue building up at the root queue. Consequently very few packets will be

sent by the source following its initial burst until the receipt of the last packet from its initial burst,

by which time it will decrease its window to about 1/65 of its initial window (note that the RTT

time of the last packet from the initial burst is about 65 times the base RTT, and that this packet

has observed approximately the peak queue at the root of the intree). Thus the window limits on

sources allows the queue at the root of the intree to empty as fast as is possible, and the queueing

term qlen in the algorithm forces new sources to moderate their windows following receipt of the

delayed acknowledgements from the initial burst. The rates of the new sources and the rates of the

existing flows through the root queue will not yet be fair - that will take longer, as a consequence

of the additive increase term in the algorithm. But utilization has been brought under control as

quickly as possible in a very stressful case without triggering PFC.

2.5 Implementation

We implement a prototype of HPCC in commodity NICs with FPGA programmability to realize

the CC algorithm (§2.3.2) and commodity switching ASICs with P4 programmability to realize a
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Header

nHop
(4 bits)

pathID
(12 bits)

1st Hop(64 bits)
B TS txBytes qLen

2nd Hop
(64 bits)

IB 
BTH

INT Overhead (42 bytes for 5 hops)

nHop (4 bits): it is initialized as 0 by the sender host; each switch add 1 to this counter
pathID (12 bits): XOR of all switch IDs along the path for detecting path changes
B (4 bits): the type of speed of the egress port (e.g. 40Gbps, 100Gbps, etc.)
TS (24 bits): the timestamp when the packet is emitted from its egress port
txBytes (20 bits): the accumulative total bytes sent from the egress port
qLen (16 bits): the current queue length of the egress port

Figure 2.7: The packet format of HPCC.

standard INT feature§ (§2.3.1). We also implemented DCQCN on the same hardware platform for

fair comparisons.

2.5.1 INT Padding at Switches

HPCC only relies on packets to share information across senders, receivers, and switches. Figure 2.7

shows the packet format of the INT padding after UDP header and before IB BTH (Base Transport

Header) as in RoCEv2 standard. The field nHop is the hop count of the packet’s path. The field

pathID is the XOR of all the switch IDs (which are 12 bits) along the path. The sender sets nHop

and pathID to 0. Each switch along the path adds nHop by 1, and XORs its own switch ID to the

pathID. The sender uses pathID to judge whether the path of the flow has been changed. If so, it

throws away the existing status records of the flow and builds up new records.

Each switch has an 8-byte field to record the status of the egress port of the packet when the

packet is emitted. B is a enum type which indicates the speed type of the port. The timestamp (TS),

total bytes sent so far (txBytes, in units of 128 Bytes) and the queue length (qLen, in units of 80

Bytes) are all standard INT information.

The overhead of the INT padding for HPCC is low. Inside a datacenter, the path length is often

§INT only requires a tiny subset of P4 programmability. Other non-P4 ASIC vendors also provide the
same INT features in their new releases.
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no more than 5 hops, so the total padding is at most 42 bytes, which is only 4.2% in a 1KB packet.

The switch also has modules such as destination-based ECMP routing, QoS, WRED, PFC, etc..

2.5.2 Congestion Control at NICs

Figure 2.8 shows HPCC implementation on a commodity programmable NIC. The NIC provides

an FPGA chip which is connected to the main memory with a vendor-provided PCIe module and

the Ethernet adapter with a vendor-providedMACmodule. Sitting between the PCIe andMAC

modules, HPCC’s modules realize both sender and receiver roles.

The Congestion Control (CC) module implements the sender side CC algorithm. It receives

ACK events which are generated from the RX pipeline, adjusts the sending window and rate, and

stores the new sending window and rate for the flow of the current ACK in the flow scheduler via

an Update event.

The flow scheduler paces flow rates with a credit-based mechanism. Specifically, it scans through

all the flows in a round-robin manner and assigns credit to each flow proportional to its current

pacing rate. It also maintains the current sending window size and unacknowledged packets for

active flows. If a flow has accumulated sufficient credits to send one packet and the flow’s sending

window permits, the flow scheduler invokes a PktSend event to TX pipe.

The TX pipe implements IB/UDP/IP stacks for running in RoCEv2. It maintains the flow con-

text for each of concurrent flows, including 5-tuples, the packet sequence number (PSN), destina-

tion QP (queue pair), etc. Once it receives the PktSend event with QP ID from the flow scheduler, it

generates the corresponding packet and delivers to the MACmodule.

The RX pipe parses the incoming packets from theMACmodule and generates multiple events

to other HPCCmodules. (1) On receiving a data packet, the RX pipe extracts its flow context and

invokes a PktRecv event to the TX pipe to formulate a corresponding ACK packet. If the packet
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Figure 2.8: Overview of HPCC’s NIC implementaঞon.

is out-of-sequence (OOS), the TX pipe sends a NAK instead. (2) On receiving an ACK packet,

the RX pipe extracts the network status from the packet and passes it to the CCmodule via the

flow scheduler. (3) On receiving a NAK, the RX pipe notifies the TX pipe to start go-back-to-N

retransmission. (4) On receiving a control packet with an RDMA operation, the RX pipe notifies

the flow scheduler to create a flow with a new QP ID, or remove an existing flow. Currently, HPCC

supports two operations: RDMAWRITE and RDMAREAD.We leave the full support of IB

verbs as future work.

2.5.3 Performance Optimization

We did many performance optimizations in our hardware implementation. Here are two examples:

Accelerating Divisions in Hardware. After receiving an ACK, the CCmodule needs to recom-

pute the window, which requires divisions in Eqn (2.4). However, divisions are expensive opera-

tions especially in FPGA.We design a lookup table to replace division operations by applying the

multiplication operation on the value of 1
n , where n is an integer. To reduce the table size while con-

straining the estimation error, we choose store n values whose difference with the previous stored
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one is larger than ε (i.e., 1
nk+1

− 1
nk ≥ ε × 1

nk ). As a result, we can speed up the division option in

Eqn (2.4) by about 8 times. The hardware memory overhead is negligible. In our current implemen-

tation, we merely use about 10KB to represent { 1
n |1 ≤ n ≤ 222, n ∈ N}.

Supporting many concurrent flows. The bottleneck to supporting a large number of concurrent

flows is the speed of the clock engine in the hardware. Because the flow scheduler uses round robin

over a fixed size array to schedule different flows, it can only support up to 50 concurrent flows at

line rate with a single engine. To support more concurrent flows, we use multiple independent en-

gines to schedule multiple independent arrays of flows. The FPGAwe use in our prototype has six

engines, which means we can support 300 concurrent flows per 25GE interface. We expect to be

able to support 9K flows in ASIC implementations given that the ASIC’s clock is much faster (e.g.,

0.2ns per tick) than our FPGA’s clock (e.g., 5ns), which is sufficient in datacenters.

2.5.4 Complexity and Overhead

Our NIC implementation takes about 12000 lines of Verilog code for the flow scheduler, RX/TX

pipes, register profiles, and top flow controls. The CCmodules for HPCC and DCQCN have

about 2000 and 800 lines of Verilog code respectively. The hardware resources (e.g., CLB LUTs,

CLB register, Block RAM, DSP, etc.) used by both HPCC and DCQCN are less than 2% of the

total in the FPGA.

We believe HPCC can be easily implemented in the next-generation RoCENICs. This is be-

cause HPCC conforms to the paradigm of existing RoCENICs, so it just needs simple logic changes,

rather than architectural changes. Specifically, it has a simple receiver and three components at the

sender: measurement, calculation, and traffic enforcement, which are already in RoCENICs, un-

like some other paradigms that are architecturally different, such as receiver-driven or credit-based

CC88,74,144,99. The major changes are incremental. We just need an INT parser at the measurement
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part which is just another type of header parsing, and changes to the calculation part are also simple

as demonstrated in our prototype.

Our switch side implementation consists of about 300 lines of P4 code and 700 lines of con-

figurations via Program-Dependent (PD) APIs in the control plane. The regular modules (e.g.,

QoS, WRED, etc.) are all standard modules used in today’s commodity switches. The additional

resources used to support INT function are small over baseline switch.p452 with 25%more stateful

ALU usage and a 5% increase in memory and Packet Header Vector resources.

Difficulty to implement TCP-like CC in hardware. From our experience in implementation of

HPCC and DCQCN and our conversations with NIC vendors, we found it is hard to implement

TCP-like CC algorithms which use sliding windows. The primary reason is sliding windows should

support retransmissions of arbitrary packet losses, so they needs random access to memory which

is complex to implement in the hardware even for a single flow. It is even harder when the number

of flows goes up to hundreds or thousands. However, implementing a sending window as we did in

HPCC, which is just a sequential array per flow without randommemory access, is straightforward

and effective.

2.6 Performance Evaluation

In this section, we use testbed experiments with our prototype and large scale ns-3 simulations50 to

evaluate the performance of HPCC and compare to existing alternatives.

2.6.1 Evaluation Setup

Network topologies. The testbed topology mimics a small scale RDMA PoD in Alibaba’s pro-

duction. The testbed includes one Agg switch and four ToRs (ToR1-ToR4) connected via four

100Gbps links. There are 32 servers in total and each server has two 25Gbps NICs. 16 servers are
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connected to ToR1 and ToR2 via two uplinks, and the other 16 servers are connected to ToR3 and

ToR4. The base RTT is 5.4μs within a rack and 8.5μs cross racks.

The topology in the ns-3 simulations is a FatTree55. There are 16 Core switches, 20 Agg switches,

20 ToRs and 320 servers (16 in each rack), and each server has a single 100Gbps NIC connected to

a single ToR. The capacity of each link between Core and Agg switches, Agg switches and ToRs are

all 400Gbps. All links have a 1μs propagation delay, which gives a 12μs maximum base RTT. The

switch buffer size is 32MB which is derived from real device configurations. The whole network is a

single RDMA domain.

Traffic loads. We use widely accepted and public available datacenter traffic traces,WebSearch188

and FB_Hadoop156 in both testbed experiments and simulations. We adjust the flow generation

rates to set the average link loads to 30% and 50% respectively. We also create some simple artificial

traffic loads to evaluate the microbenchmarks of HPCC.

Alternative approaches. We compare HPCCwith DCQCN and TIMELY142, which are CC

schemes designed for RDMA. Since neither of them limits inflight bytes, we also try to improve

them by adding a sending window (same as we use for HPCC), and we call the improved version

“DCQCN+win” and “TIMELY+win”. We also compare with DCTCP57 which is a host-based

TCP-like CC for high throughput and low latency in datacenter networks. We remove the slow

start phase in DCTCP for fair comparisons.

Parameters. For HPCC, we setWAI = 80bytes¶,maxStage = 5 in testbed andmaxStage = 0

in simulation, and η = 95%∥ in Algorithm 1. We set T to 9μs for testbed and 13μs for simulations,

which are slightly greater than the maximumRTT of the networks. For DCQCN, we use the pa-

rameters suggested by a major NIC vendor; For TIMELY, we use the parameters suggested in142.

¶Calculated based on 100 concurrent flows under 100Gbps according to §2.3.3.
∥We tried η from 95% to 98%, all of which give similar results. Here we show the most conservative set-

ting.
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For DCQCN and DCTCP, we scale the ECNmarking threshold proportional to the link band-

width (Bw). For DCQCN, we setKmin = 100KB× Bw
25Gbps andKmax = 400KB× Bw

25Gbps according

to Alibaba’s experiences (no vendor suggestion available). For DCTCP, we setKmin = Kmax =

30KB× Bw
10Gbps according to

57. We set the dynamic PFC threshold so that the PFC is triggered when

an ingress queue consumes more than 11% of the free buffer.

Performance metrics. We have five performance metrics. (i) FCT slow down; (ii) Real-time band-

width of individual flows; (iii) network latency; (iv) PFC pause duration; (v) Size of in-network

queues.

INT overhead. For considering the impact of INT overhead on the performance, we assume each

packet in HPCC has an additional 42 bytes in the header. This is a worst-case assumption because a

data packet merely has 42 bytes INTmeta-data at the last hop.

2.6.2 Testbed Experiments

We run our prototype (§2.5) on the testbed. We compare HPCCwith DCQCNwith both mi-

crobenchmarks and realistic traffic loads.

Microbenchmarks

HPCC has faster and better rate recovery Figure 2.9a and 2.9b illustrate the behaviors of HPCC and

DCQCNwith Long-Short traffic. A long flow sends at full line rate, and later a short flow with 1MB

size joins sharing the same links as the long flow and leaves after a period of time. HPCC recovers

the rate of the long flow right after the short flow ends, while DCQCN cannot recover to line rate

even after 2ms (>350 RTTs). HPCC ramps up quickly because its feedback does not rely on the

queue.

HPCC has faster and better congestion avoidance Figure 2.9c and 2.9d show howHPCC and DC-

QCN react to congestion caused by Incast. Seven senders start to send flows at the same time to-
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Figure 2.9: Comparing HPCC and DCQCN on testbed with four microbenchmark traffic loads.
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wards the receiver of a long-running flow. HPCC quickly reacts after just one round trip, so the

queue drains quickly. With DCQCN, the queue builds up to 550KB due to two reasons: (1) it

waits for the queue build up for ECN, and (2) it does not limit the inflight bytes.

HPCC has lower network latency We keep sending mice flows (1KB each) through a link that is

saturated by two elephant flows, and measure the mice flow latency and the buffer size. Figure 2.9e

and 2.9f showHPCC keeps a near-zero queue and therefore the latency of mice flows is close to

5.4μs, the base RTT. DCQCN keeps a standing queue around the ECNmarking threshold, so the

latency is consistently higher than 35μs.

HPCC has fairness Figure 2.9g and 2.9h show the fairness of HPCC and DCQCN. 4 flows join

a link one by one every second and leave afterwards. HPCC provides good fairness even in a short

time scale.

End-to-end performance We evaluate HPCC and DCQCN underWebSearch, at 30% and 50%

loads. We also run similar experiments under FB_Hadoop, which show similar trends.

HPCC significantly reduces FCT for short flows HPCC and DCQCN achieve similar FCT slow-

downs in the median, but at 95-th and 99-th percentile, HPCC achieves a much better FCT slow-

down especially for short flows (Figure 2.10a and 2.10c). For example, at 30% load, HPCC reduces

the 99-th percentile FCT slowdown from 11.2 down to 2.38 for flows shorter than 3KB, which is

only 16.9μs. The gap is larger with higher loads. For example, at 50% load, HPCC achieves a 95% re-

duction on the 99-th percentile FCT slowdown, from 53.9 down to 2.70, for the flows shorter than

3KB, which is only 19.2μs.

HPCC has steadily close-to-zero queues Figure 2.10b and 2.10d show the CDF of queue lengths at

switches, which provides more insight into the achieved performance. In both cases, the median

queue size is 0, which explains the closeness of median FCT slow down. However, HPCC keeps the

ultra-low queue size even at the very tail, thus achieving much lower FCTs for short flows. For exam-

ple, at 50% load, HPCC’s 95-th and 99-th percentile queue sizes are 19.7KB and 22.9KB, whereas
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Figure 2.10: FCT slow down and queue size of HPCC and DCQCN in testbed withWebSearch (30% and 50% avg. load).

DCQCN’s sizes are 1.1MB and 2.1MB. These experiments confirm that HPCC is very effective at

keeping the queue near zero under realistic traffic patterns. As a result, there is no packet loss and

PFC is not necessary because the queue size never reaches the PFC threshold.

2.6.3 Large-scale Event-driven Simulations

We verified the fidelity of simulation by performing the same experiment as the testbed, which

matches testbed results well. We then use simulations to evaluate HPCC on a larger network topol-

ogy and higher line rates. Figure 2.11 shows the comparison of HPCC and other CC schemes for

FB_Hadoop traffic. To stress test with diverse traffic patterns, we either add incast traffic to 30%

load traffic or run 50% load traffic. We generate the incast traffic by randomly selecting 60 senders

and one receiver, each sending 500KB. The incast traffic load is 2% of the network capacity. We

also tried various levels of traffic load, incast sizes and incast ratios, as well as withWebSearch, all of
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Figure 2.11: FCT slow down at 95-th percenঞle, PFC and latency with FB_Hadoop (30% avg. load + 60-to-1 incast and
50% avg. load).

which show similar trends. Here are the key observations:

HPCC is beneficial to short flows. Since HPCC keeps near-zero queues and resolves conges-

tion quickly, it is beneficial to short flows. All other CC schemes maintain standing queues, so they

cannot keep the latency low. Figure 2.11a and 2.11c show that for the flows shorter than 120KB,

HPCC achieves much lower FCTs than all the other schemes at 95-th percentile. This is beneficial

to applications with many short flows. This is the case for FB_Hadoop, where 90% of the flows are

shorter than 120KB.

Figure 2.11b and 2.11d show that on the tail, HPCC still achieves very low round trip latency,

under 20μs. For example, the 95-th percentile latency at 50% load is 19.8μs, which is less than 8μs

extra latency compared to the 12μs base RTT.

DCTCP outperforms DCQCN and TIMELY because it controls the queue better as its win-
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dow limits the inflight bytes. This may seem to contradict previous statements about their rel-

ative performance188,142. However, this discrepancy is mainly because they compare hardware

DCQCN/kernel-bypassing TIMELY with DCTCP based on kernel188,142, which is known to have

huge performance cost and requires higher ECN threshold, while we only simulate the effect of

CC, excluding the cost introduced by the software nature for a fair comparison. That said, HPCC

reduces DCTCP’s latency by more than 2 times, which is significant in datacenters.

Throughput for long flows. Since HPCC explicitly controls the bottleneck links to have a 5%

bandwidth headroom, and the INT header consumes extra bandwidth, the long flow has a higher

slowdown as shown in Figure 2.11a and 2.11c. The slowdown increases with a higher load as the

theory in58 shows. The reason is that the long flow slowdown is inversely proportional to the resid-

ual capacity of the network. Other CC schemes aim to fully utilize the bandwidth, so their residual

capacity is (100% − load)which is 44.6% at 50% load (including header and ACK); for HPCC, the

residual capacity is (95% − load × (1 + INT_overhead))which is 36.1%. So at 50% load the long

flows are 1.24 times slower with HPCC than with other schemes, which matches the FCT quite

well. This is a fundamental tradeoff we have to make in favor of short flows.

CC is the key to achieve stability and high performance. As Figure 2.11b shows, large scale

PFC pauses only appear when using DCQCN and TIMELY, which confirms our insight that CC

is the key to the stability problem. Specifically, controlling the inflight bytes is the key: just adding a

sending window to DCQCN and TIMELY reduces PFCs to almost zero.

We further show that a good CC scheme lessens the importance of the flow control choices. We

use PFC, go-back-N retransmission, and IRN143∗∗, in combination with DCQCN andHPCC,

and perform the same experiment. Figure 2.12 shows that with HPCC, different flow control

∗∗When using go-back-N or IRN, where packet losses are not prevented by PFC, we set the dynamic
threshold for the egress queues with α = 1, which allows a single congested egress port to consume up to half
of the buffer.
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Figure 2.12: FCT slow down at 95-th percenঞle, with different flow control choices. GBN stands for go-back-N.

schemes do not affect the performance. On the other hand, since DCQCN controls the queue

poorly, a better flow control does improve its performance (it is worth noting that, IRN adds a fixed

sized window which also limits the inflight bytes, and thus has improvement over the other two

schemes). But even with IRN, DCQCN still cannot match HPCC’s performance, which confirms

that CC is the key problem.

2.6.4 Design Choices

We use a simple 16 to 1 incast scenario to show the design choices of HPCC. The 16 senders and 1

receiver are connected via 100Gbps links through a single switch, with 1μs link propagation delay.

HPCC achieves fast reaction without overreaction. We illustrate the benefit of HPCC’s strat-

egy of combining per-ACK and per-RTT reactions. Figure 2.13 shows the time series of aggregate

throughput and queue lengths. The queue builds up at the beginning of all flows. Since the first

few ACKs of each flow already see the long queue, per-ACK reaction reacts to the queue quickly.

However, it incurs a significant overreaction, so the aggregate throughput soon drops to almost 0

and then oscillates. Per-RTT reaction reacts to the queue slowly (only after all the ACKs in the first

round are received) and wastes the information brought by the first few ACKs. As a result, the long

queue persists for a long time. HPCC introduces a reference rate that is updated every RTT and re-
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Figure 2.13: Different ways of reacঞng to ACK.
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Figure 2.14: Fairness and queue size withWAI.

acts to every ACK based on the reference rate, so HPCC achieves fast reaction without overreaction.

TuningWAI for HPCC. Figure 2.14a shows the first 10ms of the throughput of different flows.

Figure 2.14b shows the queue length distribution, sampled every 1μs.

With 16 concurrent flows,WAI should not exceed 100 Gbps×4μs×(1 − 0.95)/16 ≈ 150bytes

(4μs is the base RTT), which is confirmed by the result. Specifically, allWAI within 150bytes achieve

a queue length within 4KB at 95-th percentile, whileWAI=300bytes has a queue length of 13KB at

95-th percentile (Figure 2.14b). Within the 150 bytes range, a higherWAI has better fairness. That

said, since we need to prepare for the worst case, we setWAI to sustain 100 concurrent flows (25

bytes in this case) that has good fairness.

It is worth noting that, HPCC’s performance degrades gracefully with a highWAI. In the 300

bytes case, the queue length is still very low in general: a 13KB queue just means 1μs queueing delay.
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2.7 Related Work

CC is an enduring research topic. Here we try to cover several related works which are closely re-

lated.

RDMA CC. TIMELY142 is a pioneer in RDMACC, which uses RTT as a congestion signal. §2.6

shows that TIMELY suffers from incast congestion because it gradually adjusts its rate. Further-

more, it can converge to much longer queues than DCQCN189. iWarp154 is an alternative to Ro-

CEv2. It puts the full TCP stack into hardware NIC. As a result, iWarp suffers from well-known

TCP problems in datacenters172, such as high latency and vulnerability to incast. Furthermore, due

to the complexity to implement TCP stack in hardware, iWarp NICs in general have a higher cost90.

General CC for datacenter networks. DCTCP57 is implemented in host software which suffers

from high CPU overhead and high latency, while implementing them in hardware raise problems

similar to iWarp. In addition, because they both use ECN similar to DCQCN, they can hardly

achieve small queues.

There are several proposals aiming to reduce latency with changes in both host software and

switch hardware. pFabric59 needs to run sophisticated priority scheduling logics in switches and

to correctly prioritize traffic in hosts, which are hard to deploy99. HULL58 advocates leaving a

bandwidth headroom for ultra-low latency in datacenters, which is similar to HPCC. However,

it is based on DCTCP, which cannot slowly ramp up the sending rate to grab free bandwidth. De-

Tail184 needs a new switch architecture for lossless fabric and performs per-packet adaptive load

balancing of packet routes in switches. HOMA144 and NDP99 are receiver-driven, credit-based so-

lutions, which is a big shift from the state-of-the-art in practice, since they have complex receivers.

They, together with PIAS63 also require priority queues, while the number of priority queues is

limited in switches, and production networks often have to reserve them for application QoS. Dif-

ferent from these solutions, one HPCC’s design goal is ease of implementation in hardware for
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offloading and deployability with the start-of-the-art commodity NICs and switches. In addition,

HPCCworks with a single priority queue.

There are also explicit CCs such as XCP109 and RCP83. Besides the key difference discussed

in § 2.3.4, both of them require switches to perform computation which is not widely available in

most commodity switches, but INT is widely available (§ 2.2.4). Moreover, because HPCC allows

line rate start, new flows can finish faster than with slow start (XCP) and processor sharing (RCP).

The line rate start is allowed by our control on inflight bytes, which drains queues rapidly. HPCC’s

decoupling of utilization and fairness is inspired by XCP.

The stability of CC algorithms has been investigated by several authors using a variety of sim-

plified models64,109,112,176. We draw two main insights from previous work. Firstly the speed of

adaptation to new observations of congestion should be scaled to round-trip times in order to avoid

destabilizing oscillations. Secondly, while feedback based on queue size is important for dealing with

sudden overloads, it is not particularly helpful for steady state stability when queueing delays are

short compared with round-trip times (§2.4.3). So we aim to keep link utilizations less than 100% to

keep steady state queueing delays very short.

Flow controls for RDMA. IRN143 andMELO135 are recent proposals to reduce hardware-based

selective packet re-transmissions to prevent PFC pauses or even replace PFC. These efforts are or-

thogonal and complementary with HPCC. Different from the fixed window used in IRN, the send-

ing window in HPCC is proportional to flow’s sending rate with better network stability.

2.8 Summary

We share our study at Alibaba production networks on the difficulties to operate RDMA net-

works with the state-of-the-art high-speed CC.We propose HPCC as a next-generation CC for

high-speed networks to achieve ultra-low latency, high bandwidth, and stability simultaneously.
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HPCC achieves fast convergence, small queues, and fairness by leveraging precise load information

from INT. It has been implemented with commodity programmable NICs and switches and shows

remarkable gains. We believe HPCC is a start towards CC for future hyper-speed networks.
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3
Sundial: Robustly Bounding Precision at

Submicrosecond Level in Clock Sync

3.1 Introduction

Clock synchronization is increasingly important for datacenter applications such as distributed

transactional databases77,159, consistent snapshots69,117, network telemetry, congestion control, and
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distributed logging.

One key metric for clock synchronization is the time-uncertainty bound for each node, denoted

as ε in this paper, which bounds the difference between local clock and other clocks. This concept is

used by TrueTime in Spanner77. Spanner leverages TrueTime to guarantee the correctness proper-

ties around concurrency control and provide consistency in distributed databases. Another example

is consistent snapshots, which are commonly used for debugging or handling failures in distributed

systems. To ensure consistency among snapshots, each node needs to wait for its time-uncertainty

bound (ε) before recording the states.

Traditional clock synchronization techniques provide ε at the millisecond level (e.g., <10ms

in TrueTime77), which is no longer effective for modern datacenter applications with increasing

performance requirements and ultra low latency datacenter networks (e.g., with latency around

5μs131). Today’s applications can benefit significantly from submicrosecond-level ε. For example,

FaRMv2159, an RDMA-based transactional system, observes the median transaction delay can drop

by 25% if we improve ε from∼20μs to 100ns. CockroachDB18 can significantly reduce the retry

rate when ε drops from 1ms to 100ns based on an experiment in91.

Providing submicrosecond-level ε can also enable new network management applications. For

example, with submicrosecond-level clock differences across devices, we can measure one-way delay,

locate packet losses, and identify per-hop latency bursts129,130. It also enables synchronized network

snapshots181 which are useful for identifying RTT-scale network imbalance and collect global for-

warding state. Accurate one-way delay provides a better congestion signal to delay-based congestion

control142,118 to differentiate between forward and reverse path congestion.

There are several systems that achieve submicrosecond-level clock precision. The state-of-the-art

commercial solution on precise clock synchronization is Precision Time Protocol (PTP)20. PTP

is widely available in switches and NICs35,54,53. Each switch or NIC has a hardware clock driven

by an oscillator, generates timestamped synchronization messages in software, and sends them over
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a spanning tree to synchronize with other nodes. Normally, oscillator drifts stay within±100μs

per second and the devices synchronize every 15ms to 2 seconds53,20. A recent proposal DTP124

sends messages in the physical layer every few microseconds and can also achieve∼100ns precision.

Huygens91 is a clock-synchronization system built in software that achieves <100ns precision by

using Support Vector Machines to accurately estimate one-way propagation delays.

While these works provide high clock precision under normal cases, the time-uncertainty bound

ε grows to 10-100s of μs as datacenters are subject to a variety of failures. In large-scale datacenters,

there are common temperature-related failures which affect oscillator drifts. There are also frequent

link, device, and domain failures (i.e., a domain of links and devices that fail together) that affect the

synchronization across nodes (see §3.3).

In this paper, we present Sundial, which provides∼100ns time-uncertainty bound (ε) under

failures including temperature-related, link, device and domain failures and reports ε to applications

– two orders of magnitude better than current designs. Even in cases of simultaneous failures across

domains, Sundial provides correct ε to applications. Sundial achieves this with a hardware-software

codesign that enables fast failure detection and recovery:

Fast failure detection based on frequent synchronous messaging on commodity hardware: Sun-

dial exchanges messages every∼100μs in hardware without changing the physical layer. The fre-

quent message exchange enables fast failure detection and recovery, and frequent reduction of ε. To

ensure fast failure detection for remote nodes in the spanning tree, Sundial introduces synchronous

messaging which ensures that each node sends a newmessage only when it receives a message from

the upstream.

Fast failure recovery with precomputed backup plan that is generic to all types of failures: To

enable fast failure recovery, Sundial controller precomputes a backup plan consisting of one backup

parent for each node and a backup root, so that each device can recover locally. The backup plan

is generic to different types of failures (i.e., link, device failures, root failures, and domain failures)
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and ensures that after failure recovery, the devices remain connected without loops. We introduce

a new search algorithm for the backup plan that extends a variant of edge-disjoint spanning tree

algorithm167 but with additional constraints such as no-ancestor condition (the edge in the current

tree cannot be a forward edge in the backup tree) and disjoint-failure-domain condition (no domain

failure can take down both the parent and the backup parent for any device). Our algorithm only

takes 148ms on average to run on an example Jupiter162 topology with 88K nodes.

We evaluate Sundial with experiments in a>500 machine prototype implementation and via

large-scale simulations. Sundial achieves∼100ns time-uncertainty bound both under normal time

and under different types of failures, which is more than two orders of magnitude lower than the

state-of-the-art solutions such as PTP20, Huygens91, and DTP124. Sundial reduces the commit-wait

latency of Spanner77 running inside a datacenter by 3-4x, and improves the throughput of Swift

congestion control118 by 1.6x under reverse-path congestion.

3.2 Need for Tight Time-uncertainty Bound

A clock synchronization system for datacenters need not only a current value of time but also time-

uncertainty bound that is used by applications for correctness as well as performance. We describe

several datacenter applications and how tight time-uncertainty bound benefits them below.

Distributed Transactional Databases: Spanner77, FaRMv2159 and CockroachDB18 are some

examples of distributed databases deployed at scale in production that directly use time-uncertainty

bound to guarantee consistency—transactions wait out time-uncertainty bound before committing

a transaction. Spanner is the first to use ε in production transactional systems. While it is globally

distributed, its idea of using ε is adopted in many intra-datacenter systems such as FaRMv2159.

However, inside datacenters, with recent software and hardware improvements such as RDMA,

NVMe, and in-memory storage, transaction latencies are going towards microsecond level. For ex-
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ample, FaRMv2 is built atop RDMA for datacenters and has ε of∼20μs which already accounts

for 25% of median transaction latency! Tight ε improves the performance of these systems both in

terms of latency and throughput.

Consistent snapshots: Consistent snapshots69,117 is another important application for datacenters

for debugging, failure handling, and recovery for cloud VMs. The consistency across servers can be

guaranteed by waiting out ε to ensure the scheduled snapshot time is passed. With recent software

and hardware improvements, ε becomes a performance bottleneck at a similar level as in distributed

databases, limiting the frequency of taking snapshots.

Network telemetry: As network latency reduces to the order of a few microseconds, millisecond-

level ε is too coarse-grained. Tight ε enables a wide range of fine-grained network telemetry. For

example, per-link latency or packet losses can be measured by comparing the timestamps or counters

at both ends of a link read at the same time130,129,190. Synchronized network snapshots at RTT

scale can be enabled with tight time-uncertainty bound, and can be used for various telemetry needs

such as measuring traffic imbalance across different links/paths in the dataceter181.To achieve these,

switch clocks also need to be synchronized.

One-way delay (OWD): Synchronized clocks enable the measurement of one-way delays. Small ε

provides a tighter bound on the error in the measurement especially under failures. Measurement

of OWD is useful for many applications including telemetry and congestion control. For example,

OWD differentiates between forward and reverse-path congestion improving performance of delay-

based congestion control algorithms such as Swift118 (§3.6.3).

Distributed logging: A key challenge for debugging large-scale distributed systems is to analyze

logs collected from different devices with clock differences. Tighter ε enables more useful analysis

and opens up more distributed debugging opportunities. Our∼100ns ε is about the same as L3

cache miss time, so it can help order all log messages in a datacenter. We note that this class of ap-

plications has an additional requirement in that the synchronized clocks follow a master clock that
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reflects the physical time of day (§3.4.5).

3.3 Failures in Clock Synchronization System

In this section, we discuss the different failure scenarios affecting a clock synchronization system

and their respective impacts. We start with a brief background on clock synchronization to aid the

discussion.

3.3.1 Background on Clock Synchronization

The clock is driven by a crystal oscillator. Every device has a clock, whose value is incremented

on every tick of a hardware oscillator. Different oscillators, even of the same type, have slightly

different frequencies. The frequency of an oscillator may change over time, due to factors such as

temperature changes, voltage changes, or aging resulting in clocks to drift away over time. As an ex-

ample, oscillators in production networks can have a frequency variation of±100 ppm (parts per

million)42, meaning that the oscillator can drift within the range of±100μs per second compared

to running at the nominal frequency. More stable oscillators (e.g., atomic clocks based on Cesium,

Hydrogen or Rubidium particles or oven-controlled oscillators) are too expensive to deploy on every

device in production.

Clocks exchange messages with each other for synchronization. To ensure that clocks remain

close to each other, we need to periodically adjust the clocks to account for potential drift. Figure

3.1 shows an example where clock B synchronizes to A. A sends a synchronization message (abbrevi-

ated as sync-message in this paper) with a timestamp TA
1 based on A’s clock, and B records the receiv-

ing time (timestamped by B) of the sync-message TB
1 . Now, if B knows the message delay dAB from

A to B, B can compute the offset between A and B as TA
1 + dAB − TB

1 . To know dAB, B sends another

message to A to measure RTT, and use half of RTT to estimate: dAB = (TA
2 − TA

1 − (TB
2 − TB

1 ))/2.
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Figure 3.1: Message exchanges to synchronize B to A.

B uses offset to adjust its clock. A periodically sends out these sync-messages at an interval denoted

by sync-interval. The accuracy of dAB depends on multiple factors and we discuss them below.

A network of clocks synchronize using a synchronization structure. A common way to do

this is to construct a spanning tree over which sync-messages are sent, e.g., PTP which is the most

widely available system for datacenter clock synchronization uses a spanning tree with one device

serving as the root (called master or grandmaster). The model for best case synchronization is that

each device’s parent is one of its direct neighbors in the physical network and sync-messages flow

periodically from the root across the spanning tree.∗ This has two advantages. First, it allows switch

clocks to also be synchronized enabling additional telemetry applications (§3.2). Second, it signif-

icantly improves the measurement of dAB as shown in Figure 3.2. Noises in estimation of dAB by

halving the RTT can arise due to (1) asymmetric propagation delays of the forward path and the re-

verse path, and (2) queuing delays. For direct neighbors in the physical network, propagation delay

asymmetry is near zero, and there is no queuing delay†. There are proposals that do not use a span-

ning tree as the synchronization structure but either they don’t reflect the physical time124 (§3.4.5)

or they cannot provide submicrosecond-level precision138,141,77 (§3.7).

Time-uncertainty bound. As clocks can drift apart over time, time-uncertainty bound (ε) can be

calculated as:

∗Note that PTP doesn’t require this to be the case.
†While the devices may have local queues, the timestamp is marked at dequeue/egress time and is not

subject to local queuing delay.
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Figure 3.2: Benefit of synchronizaঞon between neighbors: symmetric forward and backward paths, and no noises from
queuing delay.

ε = εbase + (now− Tlast_sync)×max_drift_rate (3.1)

ε of a clock exhibits a sawtooth function. Tlast_sync is the last time when the clock is synchronized to

the root (not just its direct parent), now − Tlast_sync increases with time and goes back to zero after

synchronization to the root, andmax_drift_rate is a constant representing the maximum possible

drift rate between the local clock and the root’s clock. The εbase is a small constant (a few nanosec-

onds) that accounts for other noises (e.g., timestamping errors, bidirectional delay asymmetry of

physical links, etc.).

We will show that in the face of failures in production environments,max_drift_rate should be

conservatively derived (§3.3.2.1), and now− Tlast_sync can be large (§3.3.2.2).

3.3.2 Impact of Failures on ε

We classify failures affecting clock synchronization into three categories and study their impact on

ε—failures that induce large frequency variations and need a conservative setting ofmax_drift_rate,

connectivity failures that affect Tlast_sync, and incorrect behaviors due to broken clocks and message

corruption that need to be detected and addressed.
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3.3.2.1 Failures that induce large frequency variations

An oscillator’s frequency can incur a large variation in the event of sudden temperature or voltage

fluctuation. Cooling failures are common and can affect thousands of machines. In an cooling in-

cident that occurred in production recently, it resulted in errors related to clock synchronization

in a large fraction of machines (and not just the ones affected by the failure). The temperature vari-

ation resulted in oscillator frequency variation to exceedmax_drift_rate and the operator had to

shut downmany machines.‡ Thus, themax_drift_rate needs to be set very conservatively (e.g.,

200ppm in TrueTime77) to tolerate frequency variations under a wide range of temperature (e.g.,

up to 85 °C) even though in normal cases, temperature variations occur slowly91. This entails that

in order to keep ε small, we need to reduce now − Tlast_sync through frequent messaging—ε of 100ns

withmax_drift_rate of 200ppm needs sync-interval to be <500μs. Software cost of reducing sync-

interval to such low values is high—PTP takes one core to process thousands of sync-messages and

associated computations per second2, and Huygens consumes 0.44% CPU for a sync-interval of 2s

(which grows proportionally as the interval is reduced). We need hardware support for efficiency

(§3.4.1).

3.3.2.2 Connectivity failures

Failures that break the connectivity of the spanning tree also affect ε. For example, if a device or

a link in the spanning tree fails, the whole subtree under this device or link loses connectivity to

the root§, until a new spanning tree is reconfigured by the SDN controller. ε grows proportionally

to the time it takes for recovery—if it takes 100 ms, ε grows to more than 20μs. Even a distributed

‡Normally, after a cooling system failure, operators let machines continue running for 10s of minutes
before the recovery of cooling system or a gradual shutdown of machines, because this is usually safe and a
sudden total shutdown should be avoided as much as possible.

§PTP is configured on a per-port basis (not per-device), so sync-message cannot bypass the failed link or
the link associated with the failed device.
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Figure 3.3: Challenge of determining Tlast_sync. Node C cannot determine if it is synchronized to the root or not, so C has
to always set Tlast_sync conservaঞvely early to account for possible down ঞme.

spanning tree protocol supported by PTP (best master clock algorithm) is slow to converge.

What is worse, is that the inflation of ε is not only for a device affected by the failure at a given

time; instead, almost all devices have to report high ε, all the time and not only during the fail-

ure duration. This is because a device cannot distinguish whether it is affected by a failure or not.

Consider a 3-node setup as depicted in Figure 3.3 with A as the root of the spanning tree and B and

C as A’s child and grandchild respectively. When A fails, B detects the failure but C continues syn-

chronizing to Bwithout noticing the failure. This means at any time, there is no way for C to tell if

it is in-sync or not, no matter if there is an actual failure or not and thus, it has to always report large

ε (i.e., > 20μs) even during normal periods.¶ Another way to look at this is in the context of Equa-

tion 3.1, C cannot set Tlast_sync to the time it receives the last sync-message from its parent Tlast_msg;

instead, for correctness, C has to always set Tlast_sync = Tlast_msg −Trecovery, where Trecovery is the max-

imum time to recover from any failure that may break its connectivity to the root. All non-direct

descendants of the root are affected by this.

There are many possible causes of connectivity failures: besides the common link or switch

down, there are incidents that can take downmassive (10s to 100s) devices or links, such as fail-

ures related to patch panels, link bundles, power domains, or human operations186,185. Figure 3.4

shows the time series of link down events in a 1000-machine cluster during a failure incident. The

¶Without changing the PTP standard, B cannot explicitly communicate to C about the failure.
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Figure 3.4: Number of link down events per second in a 1000-machine cluster during a near two-minute window of a
failure incident.

suspected cause was a software bug related to a patch panel but its impact on device/link failures

lasted across nearly two minutes—a total of 133 links go down. Thus, in order to provide small ε,

the systemmust recover from connectivity failures quickly.

3.3.2.3 Broken clocks and message corruption

Clocks may break and stop functioning well resulting in actual drift rate to exceedmax_drift_rate.

While this is rare relative to more severe hardware problems—statistics from production show that

broken CPUs are 6 times more likely than broken clocks77—they need to be taken care of to pro-

vide correct ε to applications. Similarly, sync-message corruption may garble the associated times-

tamp and affect correctness of reported ε. A fault-tolerant clock synchronization systemmust detect

and address such anomalies.

3.4 Sundial Design and Implementation

Motivated by the discussion above, we identify two key requirements to build a fault-tolerant clock

synchronization system for datacenters that achieves performant time-uncertainty bounds. First is

a small sync-interval (§3.3.2.1)—this is well served with a hardware implementation to avoid high

CPU overhead of receiving and transmitting synchronization messages in software. Second is fast

failure recovery so that ε continues to be small even when failures happen (§3.3.2.2). The challenge
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Figure 3.5: Fast failure recovery using precomputed backup plan.

here is that recovering solely via a centralized controller is slow for our target ε requirements. In-

stead, as we show later, we can recover frommost failures locally by adding redundancy to the syn-

chronization graph, where in addition to the primary spanning tree, each device maintains a backup

parent, such that it can transition to the backup parent locally upon detecting a failure. As shown

in Figure 3.5, this takes the round trip time to the controller and the computation time out of the

critical path of failure handling.

Thus, Sundial uses a hardware-software codesign. Figure 3.6 depicts Sundial’s framework, which

has three main components. Sundial implement the most essential functions of exchanging syn-

chronization messages and detecting failures in hardware such that it can synchronize frequently

and quickly detect failures. Sundial relies on software components to take action once a failure is de-

tected, by invoking a failure handler in software which reconfigures the hardware to transition to the

backup parent pre-programmed by a centralized controller (also in software). We use the topology

in Figure 3.7(a) as a toy example to aid with the discussion in this section with Figure 3.7(b) as an

example spanning tree.
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Figure 3.6: Sundial Framework. Solid arrows are the fast local recovery. Dashed arrows are slower but non-criঞcal paths
of recovery.

3.4.1 Sundial Hardware Design

Sundial’s hardware has three main components. It implements frequent transmission of sync-

messages in a synchronous fashion, i.e., sync-messages are sent downstream only upon their receipt.

The hardware is also responsible for detecting failures and triggering software handlers for quick

recovery. Finally, the hardware maintains the current value of ε that is exported to applications. We

detail out these components below.

3.4.1.1 Frequent synchronous messaging

Sundial’s hardware supports frequent message sending to prevent clocks from drifting apart signifi-

cantly. On the root, this is done via a hardware timer maintaining a counter that increments on ev-

ery oscillator cycle, and triggers message transmission when the time since last transmission exceeds

the configured sync-interval. We configure sync-interval on the root device to be around 100μs. The

sync-messages are sent at the highest priority, but the network overhead remains extremely small—a
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Figure 3.7: Failure cases in a k=4 FatTree. (a) is the raw FatTree. To show the spanning tree clearer, we draw an
equivalent topology in (b) and a spanning tree in it. An arrow is from a parent to its child, and a dashed line indicates an
edge not used in the spanning tree. (c) shows one way of adjusঞng the spanning tree when the link between 4 and 8
fails; not only the directly impacted nodes (node 8), but also other nodes (node 5) have to change parent. (d) shows one
way of adjustment when node 4 fails; the way node 5 changes its parent (to node 3) is different from the case in (c)

(change to node 9).

100-byte packet every 100μs only consumes less than 0.01% bandwidth and adds at most 10ns queu-

ing delay for other traffic.

For non-root devices, a challenge is that an upstream failure can affect all devices in that sub-

tree. Consider the case in Figure 3.7(c), if link 4-to-8 goes down, 8 needs to switch to 5 as its parent,

which needs 5 to change its parent as well. A potential solution is explicit notification of failures

to other devices, but this has two issues—not only can this be unreliable (since the notification

messages may get dropped), it also adds complexity to the hardware. Instead, we solve this via syn-

chronous messaging where message transmission is triggered only upon receipt of a message from

upstream. In this way, an upstream failure implies that messages stop propagating downstream, and

devices can take corrective actions.
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3.4.1.2 Fast failure detection

Sundial’s hardware uses a timeout to detect if it stops receiving messages indicating an upstream

failure. The timeout is set to span multiple sync-intervals, such that occasional message drop or cor-

ruption doesn’t trigger it. It’s implemented using a counter that is incremented on every oscillator

cycle, and cleared on receiving a sync-message—once it’s exceeded, the hardware issues an interrupt

to the software.

To detect broken clocks and message corruption, each device verifies the incoming timestamp

value (adjusted for link delay). If the adjusted value lies outside the local ε, the message is marked

invalid and doesn’t trigger an update and message transmissions. A broken clock can cause contin-

uous invalid messages and thus, we don’t reset the timeout counter on their receipt. Once a broken

clock is detected, handling broken clocks is done by the failure handler in device software (§3.4.2.2).

3.4.1.3 Time-uncertainty bound calculation

The hardware maintains ε according to Equation 3.1. In our implementation, we configuremax_drift_rate

= 200ppm and εbase = 5ns×depthwhere depth is the distance of the device from the root in the tree.

Tlast_sync is updated when receiving a sync-message. In PTP, Tlast_sync should be set to earlier than

Tlast_msg. Thanks to synchronous messaging, Sundial sets it to Tlast_msg since a device stops receiving

messages on an upstream failure. This lowers now− Tlast_sync which in turn lowers ε.

3.4.2 Sundial Software Design

There are two main components to round out the fault-tolerant design of Sundial–a centralized

SDN controller that pre-calculates backup plans and programs them on the devices and a failure

handler in device software that quickly moves to the backup when a failure is detected by the hard-

ware.
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3.4.2.1 Centralized controller

The centralized controller in Sundial is responsible for computing the primary spanning tree along

with the backup plan based on the current topology and configures the devices accordingly. Com-

paring Figure 3.7(c) and 3.7(d), we see that not all neighbors of a node (e.g., node 5 in the figure)

can be the backup parent under different failures. Sundial uses a search algorithm (detailed below)

to compute a fault-tolerant backup plan that is generic to link, non-root node, root node, and do-

main failures (which can take downmultiple links or devices). We break down this requirement into

5 properties.

Properties of a fault-tolerant backup plan. We briefly introduce the terminology used. The pri-

mary spanning tree is one that is currently being used to propagate sync-messages. In addition, the

backup plan consists of a backup-parent for each node/device and a backup root. Terms like parent,

edges, paths, and ancestors apply separately to the primary and the backup graph (graph formed by

the edges in the backup plan).

(1) No-loop condition: For any primary subtree, the backup edges of nodes in the subtree do not form a

loop. This is a necessary and sufficient condition to be generic to any single link failure. The neces-

sity is obvious: if there is a loop, the nodes in the loop do not synchronize to the root after a failure.

We prove the sufficiency by induction as follows. Suppose a k-node subtree is affected by a link fail-

ure, and the k backup edges do not form a loop (Figure 3.8); the nodes other than the k nodes are

unaffected and still form a tree (called themain tree). At least one of the k nodes’ (say, C) parent is

in the main tree; otherwise, all k nodes’ parents are in the k nodes, which must form a loop, contra-

dicting the no-loop condition. We can now expand the main tree to include C since C is connected

to the main tree via its backup edge. We can then iteratively add the remaining k − 1 nodes to the

main tree.

(2) No-ancestor condition: The backup parent of a node is not its ancestor. This and property (1) to-
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A link down cuts off a 
sub-tree of k nodes. 

Main tree

k nodes have k backup 
parents. If they do not form 
a loop, at least one node’s 
backup parent is outside.

Figure 3.8: No-loop condiঞon. It is sufficient to guarantee connecঞvity a[er any link failure.

gether ensure that the backup plan is generic to any non-root node failure. Otherwise, if that ances-

tor fails, that node has no backup parent.

(3) Reachability condition: The backup root must be able to reach all nodes through backup paths.

This is necessary and sufficient to be generic to the root failure. When the root fails, all nodes change

to their backup parents, and the backup root will become the new root. To synchronize all nodes,

they must be reachable from the backup root.

(4) Disjoint-failure-domain condition: Domain failures present a unique challenge, because they

may take downmultiple devices or links. If a domain failure breaks the connectivity of a device s to

the root, swill turn to its backup parent; but if the domain failure also takes down its backup parent,

then s cannot recover its connectivity.

The following property solves this problem: for any node s, there shouldn’t be a single domain

failure that both breaks s’s connectivity to the root and takes down the backup parent or backup edge,

unless that failure also takes down the node s.

Formally, if the set of failure domains that can break s’s connectivity to the root∥ isDp, the set

of failure domains that can take down s’s backup parent or backup edge isDb, and the set of failure

domains that s belongs to isDs, we should haveDp ∩Db ⊆ Ds.

The necessity is obvious. We present the intuition behind the proof of the sufficiency. If a do-

main failure happens, s has two possibilities: either s’s connectivity is unaffected, or s connects to its

∥Any device or link failure along the primary path from the root to s can break s’s connectivity.
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Figure 3.9: Root failure detecঞon. Under any non-root failure, the backup root conঞnues receiving messages, which can
be used to disঞnguish other failures.

backup parent b. If it is the latter, then the questions is whether b is connected to the root, which

also has two possibilities. Doing this recursively, s keeps connecting to more nodes along a backup

path. The backup path will not go indefinitely due to the no-loop condition, so it finally reaches

either an unaffected node or the root.

(5) Root failure detection: Upon root failure, the backup root needs to collect sufficient information

to elect itself. Figure 3.9 describes the approach—the backup root is chosen amongst root’s children

so it has one source of information by itself.

To get information from additional sources, we set up the backup graph to have a backup path

from the subtree of another child of the primary root (i.e., the backup path from node 2 to 1 in

Figure 3.9). In this way, if the link between the primary root and the backup root fails (i.e., link

from 0 to 1), the backup root knows the primary root is still alive because it continues receiving

sync-messages that come through the backup path. We can continue this backup path to cross more

subtrees of children of the primary root to get additional sources of information (e.g., crossing node

3 and 4 in Figure 3.9).

In this way, as long as the root is alive, the backup root continues receiving sync-messages. Only

when the root fails, the backup root stops receiving messages. So the backup root can detect the

primary root failure using a second timeout of not receiving messages after it first turns to its backup

parent, and it elects itself as the new root after the second timeout.

Putting all 5 properties together. Only non-root nodes have backup parents, so there areN-1
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Backup root ignores this edge 
after the second timeout

Backup root

Backup edge

Backup sub-tree

Figure 3.10: Backup Graph. There is exactly one loop with the backup root in it. Each node in the loop is the root of a
subtree.

nodes andN-1 edges in the backup graph (N is the total number of nodes), so there must be exactly

one loop∗∗ in the backup graph, and each node in the loop has a backup subtree (can be a single

node) under it (Figure 3.10). With property (3), the backup root must be in the loop, so that the

backup root can reach all nodes. The loop should cross multiple primary subtrees of root’s chil-

dren, so it meets both property (1) and property (5) (it delivers multiple sources of primary root’s

information to the backup root). Lastly, the backup graph should meet properties (2) and (4).

Figure 3.11(a) shows an example of primary tree and backup graph for the topology in Figure

3.7. Note that the computed primary tree is different to support a backup graph. The backup graph

has a loop (between node 4 and 8) with the backup root 4 on it; the loop crosses the two primary

subtrees of root’s children (node 8 is under node 6’s primary subtree). To show how property (4)

handles domain failures, we add a failure domain that includes both node 11 and 3 (primary and

backup parents of node 7 in Figure 3.11(a)). Now in the new backup graph (Figure 3.11(b)), to

meet property (4), node 7’s backup parent becomes node 2, so that even if both node 3 and 11 go

down, node 7 (and other nodes) is still connected.

We want to highlight how the system recovers when the root fails. All backup edges get enabled

forming a loop, but no sync-messages flow at this time. At the second timeout, the backup root

elects itself and ignores incoming messages, effectively disabling the edge towards it (Figure 3.10). In

∗∗A graph with equal numbers of nodes and edges has at least one loop. In addition, if there is more than
one loop, then the graph is not fully connected.
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Figure 3.11: (a) A primary tree and a backup graph that meet all properঞes in Figure 3.7. But if node 3 and 11 are in the
same domain, node 7 cannot have them as its primary and backup parents, so its backup parent becomes node 2 in (b).

this way, sync-messages do not loop.

Algorithm for computing backup plan. Sundial uses a search algorithm to calculate the backup

plan which includes a primary tree and the backup graph. Note that not every primary tree has a

valid backup graph. Thus, the goal is to search for a primary tree and its backup graph together.

The search heuristic is based on the score of a primary tree—the maximum number of edges in the

backup graphs it supports. The corresponding backup graphs are called the largest backup graphs

(of the primary tree).

Algorithm 2 describes the algorithm. pending is the set of primary trees that are pending to be

checked, initialized with a simple BFS (Line 1). After initialization (Line 2), we start the Search

function (Line 3) that will return a pair of primary tree and backup graph. In Search, each time,

we pick the primary tree pwith the highest score (Line 6)—the most promising one—and find the

largest backup graphs for it (Line 7). If some backup graph is complete, i.e., every device (including

the backup root) has a backup parent, the search successfully returns (Line 8 - 9). Otherwise, we

update the best score so far (Line 10), and mutate p (Line 11) to get a new set of primary trees in

pending and iterate.

In Mutate, for each backup graph b (Line 14), we try to expand b to include edge <x, y> (Line

15). Since <x, y> is not usable in backup graphs of p†† (i.e., UsableInBackup(<x, y>, p) is false),

††<x, y> is not usable for sure; otherwise b is not the largest because it can readily include <x, y>.
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Algorithm 2 Searching for a primary tree and a backup graph.
1: pending = {BFS(prim_root)};
2: tested = ∅; best_score = 0;
3: return Search();
4: function Search
5: while pending is not empty do
6: p = pending.get_best(); tested∪={p};
7: backup_set = FindLargestBackup(p);
8: if ∃b ∈ backup_set|b is complete then
9: return p, b;
10: best_score=max{best_score,calc_score(p)};
11: Mutate(p, backup_set);
12: returnNotFound;
13: procedureMutate(p, backup_set)
14: for b in backup_set do
15: for each <x, y> | x ∈ b, y /∈ b do
16: new_prim_set=Improve(p, <x, y>, b);
17: for p′ in new_prim_set do
18: if p′ /∈ tested then
19: pending∪={p′};
20: if calc_score(p′)>best_score then
21: return ;
22: pending-=p;

we Improve p to make <x, y> usable (Line 16). We then add each improved version p′ to pending if

not already tested (Line 19). After all the mutations, p is removed from pending (Line 22). We will

discuss the optimizations in Line 20 - 21 later.

FindLargestBackup and Improve are key functions:

• FindLargestBackup conforms to the 5 properties. Properties (2) and (4) decide what

edges can be used in backup graphs given a primary tree p, as expressed in function Us-

ableInBackup (Algorithm 3). Properties (1), (3), and (5) decide how the backup graph

should look like. We can simply use BFS starting from the backup root (property (3)) to find
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Algorithm 3 Check if <x, y> is usable in backup graphs of p.
1: functionUsableInBackup(<x, y>, p)
2: return (x is not y’s ancestor in p) && (y’s ancestor in p and xmeet disjoint-failure-

domain condition);

the tree (property (1)) that is largest, and then enumerate the backup parent for the backup

root and see if it forms a loop that meets property (5).

• Improve’s goal is to change p to p′ so that <x, y> becomes usable (i.e., UsableInBackup(<x,

y>, p′) is true). It finds the set of p′ that meets this goal.

As long as FindLargestBackup and Improve are exhaustive, the search is exhaustive—it will

find a solution if one exists. The search process is similar to an algorithm that finds two edge-disjoint

spanning trees167, because our backup graph is composed of a more restricted spanning tree that is

edge-disjoint with the primary tree, and an extra edge towards the backup root. The problem seems

to be NP-hard although we don’t have a proof yet.

In practice, our implementation of Search is extremely fast—it only takes 148ms on average in

a simulated Jupiter topology with 88,064 nodes162 leveraging the following three strategies.

• In Line 20 - 21 of Algorithm 2, we prune enumerations as per Line 14 - 15 as long as we

find a p′ that is heuristically better than any primary trees so far (including p). This signifi-

cantly speeds up the search, as we can immediately make progress—after return (Line 21),

the search immediately starts a new iteration at Line 6 based on p′, which is heuristically bet-

ter than continuing mutating p. Note this strategy does not miss any primary trees, as the

original p remains in pending.

• FindLargestBackup only returns one of the largest backup graphs, rather than all of

them. This is sufficient as all largest backup graphs for a primary tree connect the same set of

nodes and we use this strategy in Algorithm 4.

• Improve just returns the set of p′ that keeps the largest number of b’s edges usable. This tries
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Algorithm 4 Finding the largest backup graph of p.
1: function FindLargestBackup(p)
2: b=BFS_ForBackup(backup_root, p); ▷ BFS uses UsableInBackup to avoid

unusable edges.
3: Find <y, backup_root> where y ∈ b&&UsableInBackup(<y, backup_root>, p)

&& the loop crosses multiple subtrees of prim_root in p; Add <y, backup_root> to b;
4: return {b};

to keep as many useful fruits of past iterations as possible, so it speeds up the search. Algo-

rithm 5 is based on this strategy.

These three strategies significantly reduce the computation time per iteration (Line 6 - 11). While

the latter two strategies make the search non-exhaustive, all practical datacenter topologies have

high redundancy such that in our experiments, we quickly found a backup plan even after injecting

50 successive failures. Also owing to the high redundancy in practical topologies, the number of

iterations is small since the initial p already has a very high score, only a few hundreds below the total

number of nodes.

Finally, another consequence of high redundancy is that in practice, the search iterates with al-

most monotonically increasing scores ‡‡, sometimes with jumps of tens or hundreds, reaching the

final backup plan in tens of iterations on average.

Mutation for meeting property (5) follows a similar process as Mutate.

Calculating εbase,backup. When a node turns to its backup parent, its depthmay change, so we also

precompute εbase,backup to which a device set εbase upon timeout. The exact depth is failure-dependent

as shown in Figure 3.12.

So we calculate the maximum possible depth for each node after any failures. A naive approach is

to enumerate all possible combinations of failures, which can be slow. Instead, Sundial uses a simple

dynamic-programming (DP) based scheme. If a node s turns to its backup parent b, we calculate s’s

‡‡Improve can easily find paths while keeping all b’s edges usable, because of the high redundancy.
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Algorithm 5 Changing p to make <x, y> usable and keep as many b’s edges usable as
possible.
1: function Improve(p, <x, y>, b)
2: if x is y’s ancestor in p then
3: for each edge <u, v> on the path x⇝ y in p do
4: new_prim_set∪ =Reconnect(v, x, p, b);
5: if <x, y> fails disjoint-failure-domain condition then
6: new_prim_set∪ =Reconnect(y, x, p, b);
7: return new_prim_set;
8: functionReconnect(v, x, p, b)
9: BFS from v along reverse edges, and stops at nodes outside x-subtree in p, while

keeping as many b’s edges usable as possible. It gives a set of paths S={w ⇝ v|w is
outside x-subtree in p}

10: for path in S do
11: For each <i, j>∈ path set j’s parent to i in p to get p′;
12: new_prim_set∪ = {p′};
13: return new_prim_set;

A1

B
2

4
3

Primary edge
Backup edgeRoot

Figure 3.12: Node A’s depth is dependent on the failure. If node 1 fails, A’s depth is 3 (A, B, 2, root). But if node 2 fails,
A’s depth is 4 (A, B, 4, 3, root).

maximum possible depth s.depthbackup:

s.depthbackup = 1+max(b.depthprimary, b.depthbackup)

where the max function considers two possible cases: b is unaffected by failures (b.depthprimary de-

notes b’s depth in the primary tree, a deterministic value), or affected by failures. depthbackup can be

calculated top-down.

DP works for all nodes except the nodes on the loop in the backup graph, whose DP calculations

inter-depend. But we can easily calculate their maximum possible depths. On an L-node loop, for

each node we enumerate all L + 1 possible ways it connects to the root (Figure 3.13). So the overall
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Figure 3.13: A has 6 possible paths to the root, of 3 types. (1) Backup path: if the root is down, the backup path (A, 1, 2,
3) is in effect. (2) Primary path: when A is unaffected by failures. (3) Mixed path: when failures affect A and some other
nodes on the loop, A connects to the root first along the loop for one or more hops, and then along the primary path
(e.g., A, 1, 2, ..., root). There are 4 possible mixed paths, starঞng the primary paths from respecঞve node 1, 2, 3, and 4.

time complexity isO((N− L) + L(L+ 1)) for a total ofN nodes.

3.4.2.2 Failure handler in the device software

A daemon running in firmware serves as the failure handler and responds to interrupts generated by

the hardware once it detects a failure—the hardware is reconfigured to move to the backup parent

based on the backup plan and set εbase to εbase,backup. For the backup root, if an interrupt is triggered,

the failure handler also continues to monitor incoming sync-messages for the second timeout. At

the second timeout, the device sets itself as the primary root.

Handling broken clocks. If a clock is broken77, it can drift away faster thanmax_drift_rate. In

Sundial, we detect such clocks in two steps: (1) detect the existence of a broken clock when receiving

an invalid message, and (2) confirm which one is broken. Figure 3.14 illustrates the process. As

such, a broken clock is isolated without affecting other clocks.

The failure handler is triggered by a hardware interrupt upon receiving an invalid message to

handle broken clocks. For the node with a broken clock, it evicts itself (no longer participates in

synchronization). For the node whose parent has a broken clock, it turns to its backup parent.

3.4.3 Implementation

Controller. We implement a module in the network controller. The module registers a function to

be called by the controller framework for failure notifications. When notified, this module reads the
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(1) Invalid message: 
turn to backup parent

(2) Invalid message again: 
evict myself

(1) Invalid message: 
turn to backup parent (2) Valid message

Own clock is broken

Parent’s clock is broken

Broken clock

Normal clock

Primary edge
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Figure 3.14: Handling a broken clock in two steps. If a node’s own clock is broken, the messages from both its primary
and backup parents are marked invalid by itself (the ঞmestamp is outside local ε), so it evicts itself. If a node’s parent’s

clock is broken, a[er receiving an invalid message it turns to its backup parent, and conঞnues synchronizaঞon
therea[er.

current device/link/port states, and computes a new backup plan. For each device, it compares the

existing configuration and the new configuration, and only reconfigures the devices whose configu-

ration changes, through RPC. It also configures the TX side of both primary and backup edges to

send sync-messages.

RPC Interface between the Controller and Device Firmware. The controller and the device

firmware communicates through RPCs. These RPCs have the following parameters: backup par-

ent, first timeout, and second timeout which are used to configure the device hardware.

Firmware. The RPC handler configures the backup parent, the first timeout, and the second time-

out accordingly. The backup parent and the second timeout are maintained in the firmware, and

the first timeout is maintained in the hardware registers to enable failure detection in hardware.

Only the backup-root has a non-zero value for the second timeout.

The firmware also registers a handler function for the interrupt triggered by the first timeout.

This function first reconfigures the hardware to accept sync-messages from the backup parent; then,

if the second timeout is non-zero, it waits for the timeout to see if it receives any new sync-messages;

if not, it configures the hardware to become the root.

We cannot reveal hardware details due to confidentiality.
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3.4.4 Practical Considerations

Concurrent connectivity failures may happen in practice, and may not be recovered by the backup

plan, which needs to involve the controller. Sundial maintains the correctness of ε in this case. The

only impact is that ε grows larger before being recovered by the controller: if it takes 100ms to re-

cover, ε grows up to 20μs during this time (still∼100ns during normal time). The impact is negli-

gible, because compared to single failures, concurrent failures are already rare, and only a very small

subset of them cannot be recovered by the backup plan, as discussed below.

The most commonly seen concurrent failures are caused by a domain failure, which is not an

issue because of the disjoint-failure-domain condition of the backup plan (§3.4.2.1).

If cross-domain failures happen, whether they impact Sundial depends on their locations and

time proximity. For the nodes whose connectivity is affected, the backup plan is ineffective only if

these failures also take down their backup parents/edges (special locations) within a short period

of time before the controller recomputes a new backup plan (time proximity). The chance is very

small, because cross-domain failures are random in locations and time proximity.

Small window of error before evicting a broken clock. The broken clock detection only hap-

pens when messages arrive. There is a small time window between when the failure actually happens

and when the next message arrives, during which errors could arise. This can be solved via hardware

redundancy—each node physically keeps two clocks, and each clock query reads the two clocks and

checks if they match (their time-uncertainty ranges overlap). Once a clock is broken, the next read

immediately detects it. Additionally, Sundial prevents this failure to affect other clocks, because its

children ignore the invalid messages.

False positives. If a device timeouts without a failure, it will turn to the backup parent. Such false

positives are harmless, except extra controller processing. We do not observe false positives in our

experiments.
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3.4.5 Sundial’s Innovation in the Design Space

3.4.5.1 Design space of clock synchronization

At the submicrosecond level, Sundial is the first to support time-uncertainty bound. We identify

three key aspects of the design that a clock synchronization systemmust answer.

1. Type of message: There are multiple options, synchronization messages can either be sent di-

rectly with specialized physical layer (PHY) with zero-overhead messages, or at higher layers (L2, L3,

L4) with increasing bandwidth overhead and increasing ease of deployment.

2. Noise due to message delay between a pair of clocks. The message delay in the forward and

reverse direction may not be equal due to queuing or asymmetric paths. There are three options to

deal with such noise: (1) Only synchronize between neighboring devices, such that there is no noise

(§3.3.1). (2) Use multiple messages to filter out noise; (3) Tolerate the noise.

Option (1) is the best if all devices (switches and hosts) can participate. Otherwise, option (2) and

(3) face a tradeoff between noise and overhead.

3. Network-wide synchronization structure: three options.

(1)Master clock distributed through a tree. Amaster clock distributes its time to other clocks through

a tree. The master clock can synchronize to the physical time (e.g., via GPS), so that all clocks reflect

the physical time.

(2)Master clock distributed through a mesh. Similar to (1), but instead of a tree, each clock receives

sync-messages frommultiple other clocks, forming a mesh.

(3) No master clock (no physical time). Clocks synchronize independently with each other without

regards to a master clock. For example, in DTP124 each clock follows the fastest of its neighbors. In

this option, all clocks converge to a function (e.g., max() in DTP) of all clocks, which has nothing

to do with the physical time. This option is worse than (1) and (2) because access to physical time is

important for many datacenter applications.
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Figure 3.15: Mesh structure: higher ε due to asynchronous messaging.

Tradeoff between (1) and (2). While (2) is clearly more fault-tolerant, it cannot get ε as low as (1).

The reason is that mesh-based solutions cannot use synchronous messaging. As shown in Figure

3.15a, if a clock receives sync-messages from k other clocks, synchronous messaging inflates the

number of messages by k per hop, causing exponential inflation. So mesh-based solutions have to

use asynchronous messaging, which has much larger ε—as shown in Figure 3.15b, ε increases per

hop from the master to other clocks. On the other hand, tree-based solutions can use synchronous

messaging, achieving much lower ε. §3.6.2 evaluates this effect.

3.4.5.2 Innovation and stand in the design space

Sundial’s innovation is in the third design choice, which exhibits fundamental tradeoff between

small ε and fault tolerance. Sundial aims to achieves the best of both worlds, by combining tree and

mesh structures: Sundial sends messages through a mesh, such that it still has available edges upon

failures; but the effective synchronization only happens over a primary tree, enabling it to use syn-

chronous messaging.

The first two design choices have clear best options, and they are mainly determined by hardware

availability. In our implementation, synchronizes neighboring devices at the L2 level as the spe-

cialized PHY layer is not available. That said, Sundial can benefit from such a layer if it’s available.
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Comparison with other schemes is in §3.7.

3.5 Application Access to Synchronized Clocks

In Sundial, the primary mechanism to access synchronized clocks is via hardware Rx/Tx times-

tamps. Additionally, for applications that want to access host clock directly, Sundial provides local

host to NIC/switch clock synchronization via a PI controller.

Access via hardware timestamps. NIC and switch hardware timestamps marked on the pack-

ets142 are the primary access mechanism in Sundial, for which it provides∼100ns time-uncertainty

bound. Applications such as distributed databases that have strict ε requirements rely directly on

NIC-Rx-timestamps marked on the last packet in a message to order them to provide consistency

properties. Networking stacks such as Snap137 can provide op-stream interface to applications (pre-

venting out-of-order delivery) and export the NIC timestamps. Telemetry and congestion control

applications also rely directly on NIC timestamps to measure one-way delays.

Host clock synchronization. In addition, we synchronize the local host clock to the NIC/switch

clock for applications that want to directly read the host clock (and don’t require strict guarantees

on ε). We use a Proportional-Integral controller based on clock-skew between the host and NIC

clocks as depicted in Figure 3.16. We measure the offset, o(t) and skew, s(t), every T time-units (we

use T=10ms) and apply the rate adjustment to the host clock to tick faster or slower. The constants

P and I need to be tuned in production. One challenge is that the two clock-measurements are sub-

ject to local delays such as PCIe jitter and we use linear regression to filter the noise out.
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Figure 3.16: PI controller based on clock-skew; offset and skew are measured periodically and an adjustment is
computed using suitable P and I constants.

3.6 Evaluation

Through experiments in a >500-machine testbed-prototype (§3.6.1) and through large-scale simu-

lations (§3.6.2), we show that Sundial’s time-uncertainty bound is∼100ns under different types of

failures, and discuss application improvements enabled by Sundial in §3.6.3.

3.6.1 Time-uncertainty Bound (ε) in Testbed

3.6.1.1 Methodology

Testbed. The testbed consists of 23 pods, 276 switches and 552 servers. A pod including 12 switches

and 24 servers acts as a failure domain. The oscillators used in the hardware have a frequency specifi-

cation of±100ppm. The depth of the base spanning tree in the topology is 5.

Schemes for comparison. We compare Sundial with recent submicrosecond-level clock synchro-

nization schemes: PTP20, Huygens91, and DTP124. While they do not consider time-uncertainty

bound (ε) and how it is reported to applications, we augment the designs to provide ε, according to

Equation 3.1 in §3.3.1 and describe them below.

Sundial: We set the sync-interval to 90μs.§§ The timeout is 185μs (>2×sync-interval). The second

§§90μs is just enough for∼100ns ε, although lower ε is achievable.
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timeout for the backup root to elect itself is set to 180μs (185+180>4×sync-interval). The backup

plan has a maximum depthbackup of 6.

PTP+ε: PTP is the most common submicrosecond-level synchronization protocol with a default

sync-interval of two seconds. To add ε, we set εbase to 5ns×depth, andmax_drift_rate to 200ppm.

Tlast_sync is updated as follows—for root's children, we set Tlast_sync = Tlast_msg; but for other descen-

dants, we set Tlast_sync = Tlast_msg − Trecovery to account for possible out-of-sync duration caused by

remote connectivity failures that are oblivious to them (§3.3.2.2). We set Trecovery to 2s, since it takes

2s to recover from failure.¶¶

PTP+DTP+ε: What if we could set lower sync-interval in PTP+ε? We evaluate another scheme

that leverages DTP—DTP allows very small sync-interval (a few microseconds) with low bandwidth

overhead by modifying the physical layer protocol. Since DTP requires hardware support, we em-

ulate it in our testbed by setting 5μs sync-interval (much smaller than 90μs).∥∥ All devices that are

not direct children of the root set Trecovery=100ms, where 100ms is the typical connectivity failure

recovery time measured from datacenters.∗ ∗ ∗

Huygens+ε: Huygens gathers network-wide sync-messages during each 2-second sync-interval,

and uses machine learning to decide the best adjustment for each device at the beginning of the next

sync-interval. While we do not have its implementation, we report the best possible ε it can achieve.

Specifically, we assume it is not affected by connectivity failures because of its use of network-wide

information, so Tlast_sync is set to the beginning time of each sync-interval (without minus Trecovery).

¶¶In favor of low ε, Trecovery = 2 seconds is already a very optimistic setting for PTP+ε, because recovery
may take longer if the next sync-message is also dropped by another failure that just happens at that time.
Setting Trecovery larger results in even higher ε. But we show that even with this optimistic setting, PTP+ε still
has much higher ε than Sundial.

∥∥This is sufficient to show the improvement of ε, even though we don’t have the physical layer protocol to
keep the bandwidth overhead low.
∗ ∗ ∗This is already friendly to PTP+DTP+ε because to guarantee correct ε, Trecovery should be the maximum
recovery time, which is several seconds.
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Figure 3.17: Restoraঞon of ε under inflated controller delay.

We also assume it can filter out delay noises entirely and optimistically set εbase to 0.

Failure injection. We evaluate the impact of failures on ε in Sundial and above schemes by injecting

link failures, non-root device failures, root failures, and domain failures (where multiple devices can

go down).

Metrics and measurement approach. Wemeasure ε on every device by running a daemon in the

firmware to read ε every 10μs. After a failure, the controller sends an RPC to configure the devices

for recovery. The frequent monitoring interferes with processing RPCs that are sent by the con-

troller in the event of failures. As a workaround, we set a stop time which allows the controller RPC

to execute after the monitoring stops. In this way, the monitoring tells us which devices are affected

by failures and their ε. But it also inflates the controller delay, which is unfair to other schemes as

they heavily rely on the controller for failure recovery. With knowledge of the expected controller

delay, we can easily restore the expected ε based on the measured ε (Figure 3.17), because ε’s behav-

ior is deterministic during failures recovery: ε keeps increasing, and goes back to normal when the

failure is recovered. To get the expected controller delay, we use its lower bound, the delay on the

controller (without network delay), which is more friendly to schemes other than Sundial.

3.6.1.2 ε distribution without failures

Figure 3.18 shows the distribution of ε over all devices under different schemes. In Sundial, ε≤43ns,

which matches the calculated value—the deepest device in the tree has εbase of 25ns, and 90μs sync-

interval leads to an additional 18ns.
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Figure 3.18: CDF of ε measured across devices without failures.

In contrast, all other schemes have a much higher ε. In PTP+ε and PTP+DTP+ε, devices that

do not directly synchronize to the root have to set Tlast_sync earlier than Tlast_msg by 2s and 100ms

respectively, to account for possible failure-induced out-of-sync periods, so their ε can go up to

800μs and 20μs respectively during a sync-interval. Devices directly synchronizing to the root can

set Tlast_sync to Tlast_msg and achieve lower ε. So their ε increases from 5ns (1-hop εbase) to∼400μs

and 6ns respectively (2s and 5μs sync-intervals lead to 400μs and 1ns additional ε respectively at the

end of each sync-interval). For these devices (∼6.3% of all), PTP+DTP+ε’s low ε shows the benefit

of extremely small sync-interval when failure is not a concern. Note that if available, Sundial can also

benefit fromDTP’s physical layer design to futher reduce sync-interval. In Huygens+ε, during each

2s interval, ε increases from 0 to 400μs. Reducing sync-interval comes with CPU cost (Huygens al-

ready consumes 0.44% CPU of the whole cluster). However, even if the sync-interval was halved, ε is

still 3 orders of magnitude higher than Sundial’s.

3.6.1.3 ε distribution during failures

To understand the behavior under failures, we inject 50 random failures over a course of 6 minutes

including 24 single link failures, 23 non-root single device failures, 2 domain failures and 1 root

failure.

Figure 3.19 shows the time series of ε of a device affected by a link failure. In Sundial, ε is saw-
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Figure 3.19: Time series of ε of a device affected by a link failure. The failure happens at 1s and the controller reacts to it
near 1.1s.

tooth between 15ns and 33ns during normal time, because this device has a depth of 3 in the tree.† † †

When the link failure happens, ε increases to a maximum of 84ns and goes down in just 270μs (after

the 185μs timeout, the next message is at 270μs). After that, ε is sawtooth between 30ns and 48ns,

because its εbase is set to εbase,backup by the local recovery, which is 30ns (depthbackup=6). Once the

controller reconfigures the spanning tree, ε goes back to between 15ns and 33ns because its depth

is 3. In PTP+ε, since the sync-message is dropped due to this failure, ε continues to increase for the

next 2 seconds. Even if the sync-message was not dropped, ε for PTP+ε (w/o failure) remains high.

PTP+DTP+ε’s ε increases to 40μs and recovers to 20μs when the controller recovers the connec-

tivity. However, even if the controller delay was lower (50ms), it only reduces the peak ε to 30μs,

but the normal ε is still around 20μs. Huygens+ε is not affected by failures, but its ε is normally very

large (200μs at median and up to 400μs).

The behavior is similar under other failures—ε depends on the recovery time. For PTP+ε and

PTP+DTP+ε, the recovery time depends on how long it takes for the controller to recover from

it. For Sundial, the recovery time is much smaller as it’s local. Any non-root failure recovery time

is around 270μs, as is the case in Figure 3.19. The root failure takes slightly longer to recover from

(365μs after the two timeouts) and ε increases to up to 103ns. The devices at different levels in the

† † †Figure 3.21 shows the behavior at smaller timescales.
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Figure 3.20: Blast radius of failures under different schemes. Impacted device ঞme is the summaঞon of per-device
impacted ঞme—duraঞon when a device stops receiving sync-messages—over all devices .

tree have slightly different ε (discussed in §3.6.1.4).

We now study the spatial and temporal impact range (blast radius) of failures. Figure 3.20 shows

that Sundial’s blast radius is very small. Even after 50 failures, the total impacted time summarized

over all devices is only 131ms. The most significant jump happens when the root fails (40-th fail-

ure). PTP+ε and PTP+DTP+ε’s blast radius is much higher owing to their longer recovery time.

Note that more devices are affected by failures under Sundial (401 in total) than under PTP+ε (3

in total) and PTP+DTP+ε (55 in total) as Sundial’s backup-plan-based recovery can affect remote

devices as well (those under the subtree of the failure). Even then the total impacted time for Sundial

remains significantly smaller.

PTP+ε exhibits a step function because only failures occuring close to sync-interval boundaries

affect it as the sync-interval of 2s is longer than the time to recover in most cases. The impact, how-

ever, is larger than in other schemes because it takes 2s for the next sync-message. PTP+DTP+ε’s

sync-interval is only 5μs and thus, every failure affects it. While Huygens+ε is not affected by con-

nectivity failures, its ε remains high as shown before.

3.6.1.4 Microbenchmarks

How Sundial’s different techniques improve ε. We zoom into details of how each technique

improves ε. Specifically, starting with PTP+ε, we add (1) frequent sync-messages, (2) synchronous
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messaging, and (3) backup plan to it one by one, resulting in four schemes: PTP+ε, PTP+ε+freq_msg,

PTP+ε+freq_msg+sync_msging, and Sundial itself.

Figure 3.21 shows the time series of ε during a link failure. Frequent sync-messages improve ε by

an order of magnitude. Synchronous messaging further reduces ε during normal time as it helps

each device detect connectivity failures: as long as a device receives a sync-message, it is connected to

the root, so Tlast_sync can be safely set to Tlast_msg. Finally, adding the backup plan significantly speeds

up the failure recovery—ε only increases for 270μs to a maximum of 84ns before the backup plan is

activated, two orders of magnitude lower.

To show how Sundial’s backup plan handles domain failures, we also run Sundial without con-

sidering domain failures (called Sundial w/o domain). We find that if a domain failure simultane-

ously takes down both the primary and backup parents of a device, the device’s ε is like

PTP+ε+freq_msg+sync_msging in Figure 3.21. This is expected because a down backup parent

is equivalent to no backup parent. But if the failure domain is considered in the backup plan, ε is

similar to Sundial in Figure 3.21, because the backup plan guarantees that no device loses both its

primary and backup parents due to this domain failure. We also try another domain failure, which

gradually takes down the primary and backup parents of a device, mimicing the domain failure that

gradually takes downmultiple devices or links (e.g., Figure 3.4). The result is similar.

Distribution of ε at different levels of the tree. We plot the maximum ε across devices at different

depths, under different scenarios, shown in Figure 3.22. Root’s ε is always 0. ε increases linearly with

depth, which is expected as each level increments εbase by 5ns.

3.6.2 Large-scale Simulations

We compare Sundial vs Marzullo’s algorithm138, an agreement algorithm for fault-tolerant clock-

synchronization which is used by NTP141 and TrueTime77. Marzullo’s algorithm also introduces
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Figure 3.21: A link failure happens at 50 ms. The controller reacts to the failure at around 150 ms.

Figure 3.22: Distribuঞon of ε at different levels in the tree.

time-uncertainty bound (ε) (called as error-bound in the original version). Since it is not supported

in hardware due to its complexity, we use large scale simulations to demonstrate the performance

characteristics.

Marzullo’s algorithm synchronizes clocks through a mesh, so it can tolerate connectivity fail-

ures but has higher ε (§3.4.5). To reconcile the different time values and ε frommultiple clocks,

each node does intersection of time-uncertainty ranges of different clocks as the correct time should

be within all ranges. A set of master clocks (1 or more masters synchronized via GPS) serve as the

source of synchronization, whose ε is always close to zero. Broken clocks can also be detected when

the intersection result is empty. We simulate in a Jupiter topology162 with 88,064 devices, where

each node sends sync-messages to all its neighbors to maximize the tolerance to failures. We set 2
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Figure 3.23: CDF of ε during normal ঞme in Jupiter in simulaঞon.

masters to tolerate master failures. The sync-interval is 90μs, same as Sundial.

Figure 3.23 shows that during the normal time, Sundial has smaller ε thanMarzullo’s algorithm.

Under failures, Marzullo’s algorithm’s ε is affected insignificantly. For Sundial, ε increases during

failure recovery; the largest ε is 178ns, which is under the root failure.

3.6.3 Application Performance Improvement

Distributed transactional system. We evaluate the impact of smaller time-uncertainty bound us-

ing a load-test provided to us by Spanner team77. We run the load-test inside a datacenter. The load-

test does 4KB transactions and we measure commit-wait gap—time to wait out time-uncertainty be-

fore committing the transaction. Results are in Table 3.1 where we show that our system improves

performance by 3-4× not only in the median but also at the 99-th percentile.

Table 3.1: Sundial improves commit-wait latency by 3-4× for Spanner running inside a datacenter.

Baseline With Sundial
Median 211μs 49μs
99-%ile 784μs 238μs

Congestion Control. Delay-based congestion control such as Swift118 is widely used in datacen-

ters relying on end-to-end RTTmeasurements to control sending rate. A key challenge with such

schemes is how to differentiate between forward and reverse-path congestion. As an example, con-
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gestion in the reverse path can also inflate RTT causing a sender to slow down even though there is

no congestion in the forward path.‡ ‡ ‡ Synchronized clocks solve this problem as they enable the

measurement of one-way delay (OWD) which can pinpoint the direction in which congestion is

occurring.

We perform a microbenchmark with 3 servers—A, B and C. First, we only send traffic from A to

B which achieves line-rate throughput. Next, we introduce reverse-path congestion by adding traffic

from B and C to A. In Table 3.2, we observe A’s throughput goes down to 50Gbps even though

there was no congestion in the forward path. Replacing RTTwith OWD as measured using Sundial

resolves this completely and A continues to send at line rate.

Table 3.2: Using one-way delay (OWD) improves throughput in the presence of reverse-path congesঞon.

RTT OWD
No reverse congestion 80.1Gbps 80.5Gbps
Reverse congestion 50.5Gbps 80.9Gbps

3.7 Related Work

Other clock synchronization schemes. Table 3.3 compares state-of-the-art solutions, in the design

space outlined in §3.4.5.

DTP124 is the one introducing the special PHY to achieve zero bandwidth overhead of sync-

messages. If this modified PHY can be standardized and productionized in the future, Sundial can

readily benefit from it to have lower sync-interval and ε. Separately, DTP does not reflect physical

time since it has no master clock.

‡ ‡ ‡While prioritizing the ACKmay solve the problem, it is impractical in production because of two rea-
sons. (1) Network priorities are typically tied to business priorities; and we simply cannot send ACKs for
lower business priority traffic on a higher network priority. (2) Sending ACKs on a higher network priority
precludes ACK piggybacking on data packets, thereby increasing the packets-per-second to process. This is
especially detrimental for CPU-efficient networking stacks such as PonyExpress in Snap137.
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Table 3.3: Design choices of state-of-the-art clock synchronizaঞon schemes. Italic opঞons are the best.

DTP 124 Huygens 91 Marzullo 138 PTP boundary clock 20 Sundial
Message type Special PHY L3 Unspecified L2 L2

Dealing with delay noises Neighbor Multi. msg Unspecified Neighbor Neighbor
Synchronization structure Nomaster Master, mesh Master, mesh Master, tree Master, mesh+tree

Support time-uncertainty bound No No Yes No Yes

Huygens91 does not synchronize switches, so it uses multiple messages between each pair to filter

out noises. As a result, Huygens’ sync-interval is limited, so it cannot achieve tight ε. We believe

Huygens is more suitable for environments where switches are out of control. Huygens also does

not consider ε; if added, εwill be large because of the large sync-interval. While it assumes clocks

drift slowly during normal time, it cannot set a smallmax_drift_rate because of failures in §3.3.2.1;

otherwise it risks datacenter-wide application-level errors (e.g., inconsistent transactions), which is

unacceptable.

Marzullo’s algorithm138 sends messages through a mesh, so its ε is not tight. It is the first to intro-

duce ε. PTP boundary clock20 is based on tree, so it is not fault-tolerant.

Other solutions are too expensive (e.g., GPS125), too complex123,121,158 or don’t provide physical

time178,163,157.

Fault tolerance in other systems. In distributed systems and networking, fault tolerance is pro-

vided through redundancy122,28,55,162,94,185. However, Sundial’s backup plan cannot be chosen

arbitrarily and needs to satisfy a set of properties (§3.4.2.1) to be generic to different types of fail-

ures.

Ethernet uses spanning tree protocols17,100 that can recompute a spanning tree in a distributed

fashion after a failure happens, but they usually take 100s of milliseconds to a few seconds to con-

verge100. In contrast, Sundial proactively computes a backup plan aiding fast local recovery.
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3.8 Summary

Sundial is the first submicrosecond-level clock synchronization system that is resilient to failures. It

uses hardware-software codesign to quickly detect failures and recover from them, enabling tight

bounds on time-uncertainty. Our evaluation shows that Sundial provides∼100ns time-uncertainty

bound under different types of failures. We also show performance improvements in Spanner and in

Swift brought by Sundial.
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4
FlowRadar: Precise Per-flow Telemetry

4.1 Introduction

NetFlow8 is a widely used monitoring tool for over 20 years, which records the flows (e.g., source

IP, destination IP, source port, destination port, and protocol) and their properties (e.g., packet

counters, and the flow starting and finish times). When a flow finishes after the inactive timeout,

NetFlow exports the corresponding flow records to a remote collector. NetFlow has been used for
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a variety of monitoring applications such as accounting network usage, capacity planning, trou-

bleshooting, and attack detection.

Despite its wide applications, the key problem to implement NetFlow in hardware is how to

maintain an active working set of flows using a data structure with low time and space complexity.

We need to handle collisions during flow insertion and remove old flows to make room for new

ones. These tasks are challenging given the limited per-packet processing time at merchant silicon.

To handle this challenge, today’s NetFlow is implemented in two ways: (1) Using complex cus-

tom silicon that is only available at high-end routers, which is too expensive for datacenters; (2) Us-

ing software to count sampled packets from hardware, which takes too much CPU resources at

switches. Because of the lack of usable NetFlow in datacenters, operators have to mirror packets

based on sampling or matching rules and analyze these packets in a remote collector98,177,190,153. It

is impossible to mirror all the packets because it takes too much bandwidth to mirror the traffic, and

too many storage and computing resources at the remote collector to analyze every packet. (§ 4.2)

However, in datacenters, there is an increasing need to have visibility of the counters for all the

flows all the time. We need to cover all the flows to capture those transient loops, blackholes, and

switch faults that only happen to a few flows in the Network and to perform fine-grained traffic

analysis (e.g., anomaly detection). We need to cover these flows all the time to identify transient

losses, bursts, and attacks in a timely fashion. (§ 4.3)

In this paper, we propose FlowRadar, which keeps counters for all the flows with lowmem-

ory overhead and exports the flow counters in short time scales (e.g., 10ms). The key design of

FlowRadar is to identify the best division of labor between cheap switches with limited per-packet

processing time and the remote collector with plenty of computing resources. We introduce en-

coded flowsets that only require simple constant-time instructions for each packet and thus are easy

to implement with merchant silicon at cheap switches. We then decode these flowsets and perform

network-wide analysis across time and switches all at the remote collector. We make the following

106



key contributions in building FlowRadar:

Capture encoded flow counters with constant time for each packet at switches: We introduce

encoded flowsets, which is an array of cells that encode the flows (5 tuples) and their counters. En-

coded flowsets ensure constant per-packet processing time by embracing rather than handling hash

collisions. It maps one flow to many cells, allows flows to collide in one cell, but ensure each cell has

constant memory usage. Since encoded flowsets are small, we can afford to periodically export the

entire flowsets to the remote collector in short time scales. Our encoded flowset data structure is an

extension of Invertible Bloom filter Lookup Table (IBLT), but provides better support for counter

updates.

Network-wide decoding and analysis at a remote collector: While each switch independently

encodes the flows and counters, we observe that most flows traverse multiple switches. By leverag-

ing the redundancies across switches, we make the encoded flowsets more compact. We then pro-

pose a network-wide decoding scheme to decode the flows and counters across switches. With the

network-wide decoding, our encoded flowsets can reduce the amount of memory needed to track

100K flows by 5.6% compared to an ideal (and hence impractical) implementation of NetFlow with

perfect hashing (i.e., no collisions) while providing 99% decoding success rate∗. (§ 4.4 and 4.5)

FlowRadar can support a wide range of monitoring applications including both existing moni-

toring applications on NetFlow, and new ones that require monitoring all the flows all the time. As

demonstrations, we design and build two systems on top of FlowRadar: one that detects transient

loops and blackholes using a network-wide flow analysis and another that provides a per-flow loss

map using temporal analysis (§ 4.6).

We discuss the implementation issues in § 4.7, compare with related work in § 4.8, and conclude

in § 4.9.

∗The decode success rate is defined as the probability of successfully decoding all the flows.
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Table 4.1: Comparing FlowRadar with hardware-based NetFlow in custom silicon, sampling-based so[ware
NetFlow in merchant silicon, and sFlow/EverFlow

Hardware-based NetFlow Software-based NetFlow sFlow 177, FlowRadar
in custom silicon (Sampled) EverFlow 190

Division of labor
State in switch hardware active working set of flows none none encoded flows records
State in switch software none (or some active flows) active working set of flows none none
Data exported to collector flow records after finish flow records after finish selected pkts&timestamps periodic encoded records
Coverage of traffic
Temporal coverage No No No (if select control pkts) Yes (milliseconds)
Flow coverage All or sampled packets sampled packets sampled/selected packets All

4.2 Motivation

In this section, we discuss the key challenges of implementing NetFlow. We then describe three

alternative monitoring solutions (Table 4.1): NetFlow in high-end routers with custom silicon, Net-

Flow in cheap switches with merchant silicon, and selective mirroring. To address the limitations

of these approaches, we present FlowRadar architecture, which identifies a good division of labor

between the switches and the remote collector.

4.2.1 Key Challenges of Supporting NetFlow

Since NetFlow has been developed for over 20 years, there have been many implementations and

extensions of NetFlow in routers and switches. We cannot capture all the NetFlow solutions here,

and in fact many solutions are proprietary information. Instead, we focus on the basic function of

NetFlow: storing the flow fields (e.g., 5 tuples) and the records (e.g., packet counter, flow starting

time, the time that the flow is last seen, etc.) in a hash table. The key challenge is how to maintain

the active working set of flows in the hash table given the limited packet processing time.

Maintain the active working set of flows: There are two key tasks in maintaining the active work-

ing set of flows:

(1) How to handle hash collisions during flow insertion? When we insert a new flow, it may experi-
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ence collisions with existing flows. One solution is to store multiple flows in each cell in the hash

table to reduce the chances of overflow (e.g., d-left hashing62,174), which requires atomic many-byte

memory accesses. Another solution to move existing flows around to make room for new flows

(e.g., Cuckoo hashing150), which requires multiple, non-constant memory accesses per packet in

the worst case. Both are very challenging to implement on merchant silicon with high line rate. The

detailed challenges are discussed in § 4.8.

(2) How to remove an old flow? We need to periodically remove old flows to make room for new

flows in the hash table. If a TCP flow receives a FIN, we can remove it from the table. However, in

datacenters there are many persistent connections reused by multiple requests/responses or mes-

sages. To identify idle flows, NetFlow keeps the time a flow is last seen and periodically scan the

entire hash table to check the inactive time of each flow. If a flow is inactive for more than the inac-

tive timeout, NetFlow removes the flow and exports its counters. The inactive timeout can only be

set between 10 and 600 seconds with a default value of 15 seconds7. When the hash table is large, it

takes a significant time and switch CPU resources to scan the table and clean up the table entries.

Limited per-packet processing time at merchant silicon: It is hard to maintain the active work-

ing set of flows at the merchant silicon—the commodity switch design in datacenters. The key con-

straint of the merchant silicon is the limited time we can spend on each packet. Suppose a switch has

40Gbps per port, which means 12ns per packet processing time for 64-byte packets†. Let’s assume

the entire 12ns can be dedicated to NetFlow by performing perfect packet pipelining and allocating

all other packet processing functions (packet header parsing, Layer 2/3 forwarding, ACLs, etc.) to

other stages. Yet inside NetFlow, one needs to calculate the hash functions, look up SRAM, run a

few ALU operations, and write back to the SRAM. Even with on-chip SRAMwhich has roughly

1ns access time, to finish all these actions in 12ns is still a challenge. (Similar arguments are made

†This becomes worse when datacenters move to 100Gbps.
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in86 about the difficulties of implementing data streaming at routers.)

4.2.2 Alternative Monitoring Solutions

Due to the limited per-packet time in merchant silicon, one cannot process complex and non-

constant time insertion and deletion actions as required in NetFlow. Therefore, there are three

alternatives (Table 4.1):

Hardware-based NetFlow in custom silicon: One solution is to design custom silicon to main-

tain the active working set of flows in switch hardware. We can cache popular flow entries in on-

chip SRAM, but the rest in off-chip SRAM or DRAM.We can also combine SRAMwith expen-

sive and power-hungry TCAM to support parallel lookup. Even with the expensive custom silicon,

the test of Cisco high-end routers (Catalyst series)76,24 shows that there is still around 16% switch

CPU overhead for storing 65K flow entries in hardware. Cisco highly recommends NetFlow users

to choose sampling to reduce the NetFlow overhead on these routers76.

Sampled software-based NetFlow in merchant silicon: Another solution is to sample pack-

ets and mirror them to the switch software, and maintain the active working set of flows in soft-

ware. This solution works with cheap merchant silicon, but takes even more CPU overhead than

hardware-based NetFlow in high-end routers. To reduce the switch CPU overhead of NetFlow and

avoid interrupting other processes (e.g., OSPF, rule updates) in CPU, operators have to set sampling

rate low enough (e.g., down to 1 in 4K). With such low sampling rate, operators cannot use Net-

Flow for fine-grained traffic analysis (e.g., anomaly detection) or capturing those events that only

happen to some flows (e.g., transient loops or blackholes).

Selective mirroring (sFlow177, EverFlow190): The final solution datacenter operators take today

is to only sample packets or select packets based on match-action rules, and then mirror these pack-

ets to a remote collector. The remote collector extracts per flow information and performs detailed
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Figure 4.1: FlowRadar architecture

analysis. This solution works with existing merchant silicon, and best leverages the computing re-

sources in the cloud. However, it takes too much bandwidth overhead to transfer all the packets to

the collector and too much storage and computing overhead at the collector190. Therefore, opera-

tors can only get a partial view from the selected packets.

4.2.3 FlowRadar Architecture

Instead of falling back to sampling in existing monitoring solutions, we aim at providing full visi-

bility to all the flows all the time (see example use cases in § 4.3). To achieve this, we propose to best

leverage the capabilities at both the merchant silicon at switches and the computing power at the

remote collector (Figure 4.1).

Capturing encoded flow counters at switches: FlowRadar chooses to encode flows and their

counters into small fixed memory size that can be implemented in merchant silicon with constant

flow insertion time. In this way, we can afford to capture all the flows without sampling, and peri-

odically export these encoded flow counters to the remote collector in short time scales.

Decoding and analyzing flow counters at a remote collector: Given the encoded flows and

counters exported frommany switches, we can leverage the computing power at the remote col-

lector to perform network-wide decoding of the flows, and temporal and flow space analysis for
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different monitoring applications.

4.3 Use Cases

Since FlowRadar provides per flow counters, it can easily inherit many monitoring applications

built on NetFlow such as accounting, capacity planning, application monitoring and profiling,

and security analysis. In this section, we show that FlowRadar provides better monitoring support

than sampled NetFlow and sFlow/EverFlow in two aspects: (1) Flow coverage: count all the flows

without sampling; and (2) Temporal coverage: export these counters for each short time slot (e.g.,

10ms).

4.3.1 Flow Coverage

Transient loop/blackhole detection: Transient loops and blackholes are important to detect, as

they could cause packet loss. Just a few packet losses can cause significant tail-latency increase and

throughput drops (especially because TCP treats losses as congestion signals)139,15, leading to vio-

lations of service level agreements (SLAs) and even a decrease of revenue81,175. However, transient

loops and blackholes are difficult to detect, as they may only affect a few packets during a very short

time period. EverFlow or sampled NetFlow only select a few packets to monitor, and thus may miss

most of the transient loops and blackholes. In addition, the transient loops and blackholes may only

affect a certain kind of flows, so probing methods like Pingmesh96 may not even notice the exis-

tence of them. Instead, if we can capture all the packets in each flow and maintain a corresponding

counter in real time at every switch, we can quickly identify flows that are experiencing loops or

blackholes (see § 4.6).

Errors in match-action tables: Switches usually maintain a pipeline of match-action tables for

packet processing. Datacenters have reported table corruptions when switch memory experiences
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soft errors (i.e., bit flips) and these corruptions can lead to packet losses or incorrect forwarding for

a small portion of the traffic96,190‡. Such corruptions are hard to detect using network verification

tools because they cannot see the actual corrupted tables. They are also hard to detect by sampled

NetFlow or EverFlow because we cannot pre-decide the right set of packets to monitor. Instead,

since FlowRadar can monitor all the packets, we can see problems when they happen (§ 4.6).

Fine-grained traffic analysis: Previous research has shown that packet sampling is inadequate

for many fine-grained monitoring tasks such as understanding flow size distribution and anomaly

detection85,82,136. Since FlowRadar monitors all the packets, we can provide more accurate traffic

analysis and anomaly detection.

4.3.2 Temporal Coverage

Per-flow loss map: Packet losses can be caused by a variety of reasons (e.g., congestion, switch in-

terface bug, packet corruptions) and may have significant impact on applications. Although each

TCP connection can detect its own losses (with sequence numbers or with switch support72),

it is hard for the operators to understand where the losses happen inside the network, howmany

flows/applications are affected by such loss, and how the number of losses changes over time. Net-

Flow with low sampling rates cannot capture losses that happened to flows that are not sampled;

and even for those sampled flows, we cannot infer losses from estimated flow counters. EverFlow

can only capture control packets (e.g., NACK (Negative Acknowledgment)) to infer loss and con-

gestion scenarios. Instead, if we can deploy FlowRadar at switches, we can directly get an overall

map of the per-flow loss rate for all the flows soon after a burst of packets passes by (see § 4.6).

Debugging ECMP load imbalance: ECMP load imbalance can lead to inefficient bandwidth

usage in network and can significantly hurt application performance16. Short-term load imbalance

‡For example, the L2 forwarding table gets corrupted. The packet that matches the entry can be flooded
or mis-forwarded, leading to transient blackholes or loops before the entry is relearnt and corrected.
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can be caused by either (1) the network (e.g., ECMP not hashing on the right flow fields) or (2) the

application (e.g., the application sends a sudden burst). If operators can quickly distinguish the two

cases, they can make quick reactions to either reconfigure the ECMP functions for the network

problem or to rate limit a specific application for the application problem.

EverFlow can diagnose some load imbalance problems by mirroring all the SYN and FIN packets

and count the number of flows on each ECMP paths. However, it cannot diagnose either of the two

cases above because it does not have detailed packet counters for each flow and does not know the

traffic changes for these flows over time. Traditional NetFlow has similar limitations (i.e., no track of

flows over time).

Timely attack detection: Some attacks exhibit specific temporal traffic patterns, which are hard

to detect if we just count the number of packets per flow as NetFlow, or just capture the SYN/FIN

packets as EverFlow. For example, TCP low-rate attacks119 send a series of small traffic bursts that

always trigger TCP’s retransmission timeout, which can throttle TCP flows to a small fraction of

the ideal rate. With per-flow counters at small time scale, we can not only detect these attacks by

temporal analysis, but also report these attacks quickly (without waiting for the inactive timeout in

NetFlow).

4.4 FlowRadar Design

The key design in FlowRadar is an encoding scheme to store flows and their counters in a small

fixed-size memory, that requires constant insertion time at switches and can be decoded fast at the

remote collector. When there is a sudden burst of flows, we can leverage network-wide decoding to

decode more flows frommultiple encoded flowsets. We also analyze the tradeoff between memory

usage and decoding success rates.
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4.4.1 Encoded Flowsets

The key challenge for NetFlow is how to handle flow collisions. Rather than designing solutions to

react to flow collisions, our design focuses on how to embrace collisions: We allow flows to collide

with each other without extra memory usage, and yet ensure we can decode individual flows and

their counters at the collector.

There are two key designs that allow us to embrace collisions: (1) First, we hash the same flow to

multiple locations (like Bloom filters). In this way, the chance that one flow collide with other flows

in one of the bins decreases. (2) When multiple flows fall in the same cell, it is expensive to store

them in a linked list. Instead, we use a XOR function to the packets of these flows without using

extra bits. In this way, FlowRadar can work with a fixed-size memory space shared among many

flows and has constant update and insertion time for all the flows.

Based on the two designs, the encoded flowset data structure is shown in Figure 4.2, which in-

cludes two parts: The first part is the flow filter. The flow filter is just a normal Bloom filter with

an array of 0’s and 1’s, which is used for testing if a packet belongs to a new flow or not. The sec-

ond part is the counting tablewhich is used to store flow counters. The counting table includes the

following fields:

• FlowXOR:which keeps the XOR of all the flows (defined based on 5 tuples) mapped in the

bin
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• FlowCount: which keeps the number of flows mapped in the bin

• PacketCount: which keeps the number of packets of all the flows mapped in the bin

Algorithm 6 FlowRadar packet processing
1: if ∃ i∈ [1,kf], s.t. FlowFilter[HF

i (p.flow)]==0 then
2: FlowFilter.add(p.flow);
3: for j= 1..kc do
4: l =HC

j (p.flow);
5: CountTable[l].FlowXOR =CountTable[l].FlowXOR⊕ p.flow;
6: CountTable[l].FlowCount ++;
7: for j= 1..kc do
8: CountTable[HC

j (p.flow)].PacketCount ++;

As indicated in Algorithm 6, when a packet arrives, we first extract the flow fields of the packet,

and check the flow filter to see if the flow has been stored in the flowset or not. If the packet comes

from a new flow, we update the counting table by adding the packet’s flow fields to FlowXOR and

incrementing FlowCount and PacketCount at all the kc locations. If the packet comes from an exist-

ing flow, we simply increment the packet counters at all the kc locations.

Each switch sends the flowset to the collector every a few milliseconds, which we defined as time

slots. In the rest of the paper, we set the value of the time slot to 10ms, unless explicitly setting it to

other values in the context.

When FlowRadar collector receives the encoded flowset, it can decode the per flow counters by

first looking for cells that include just one flow in it (called pure cell). For each flow in a pure cell, we

perform the same hash functions to locate the other cells of this flow and remove it from all the cells

(by XORing with the FlowXOR fields, subtracting the packet counter, and decrementing the flow

counter). We then look for other pure cells and perform the same for the flows in each pure cell. The

process ends when there are no pure cells. The detailed procedure is illustrated in Algorithm 7.
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Algorithm 7Decoding at a single node
1: function SingleDecode(A)
2: flowset = ∅;
3: for each cwhere CountTable[c].FlowCount==1 do
4: flow = A.CountTable[c].FlowXOR;
5: flowset.add(flow);
6: count = A.CountTable[c].PacketCount;
7: for j=1..kc do
8: l=HC

j (flow);
9: A.CountTable[l].FlowXOR =CountTable[l].FlowXOR⊕ flow;
10: A.CountTable[l].FlowCount -= 1;
11: A.CountTable[l].PacketCount -= count;
12: return flowset;

4.4.2 Network-wide Decoding

Operators can configure the encoded flowset size based on the expected number of flows. How-

ever, there can be a sudden burst in terms of the number of flows. In that case, we may fail to decode

some flows, when we do not have any cell with just one flow in the middle of the SingleDecode pro-

cess. To handle a burst of flows, we propose a network-wide decoding scheme that can correlate

multiple encoded flowsets at different switches to decode more flows. Our network-wide decoding

process has two steps: decoding flows across switches and decoding counters inside a single switch.

FlowDecode across switches: The key observation is that if we use different hash functions at

different switches, and if we cannot decode one flow in one encoded flowset, it is likely that we may

be able to decode the flow at another encoded flowset at a different switch the flow traverses. For

example, suppose we collect flowsets at two neighboring switches A1 and A2. We know that they

have a common subset of flows from A1 to A2. Some of these flows may be single-decoded at A1 but

not A2. If they match A2’s flow filter, we can remove these flows from A2, which may lead to more

one-flow cells. We can run SingleDecode on A2 again.

The general process of FlowDecode is described in Algorithm 8. Suppose we have theN encoded
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Algorithm 8 FlowDecode
1: for i=1..N do
2: Si = SingleDecode(Ai);
3: finish = false;
4: while not finish do
5: finish = true;
6: for each Ai,Aj are neighbor do
7: for flow in Si − Sj do
8: if Aj.FlowFilter.contains(flow) then
9: Sj.add(flow);
10: for p=1..kc do
11: l =Hj,C

p (flow);
12: Aj.CountTable[l].FlowXOR = Aj.CountTable[l].FlowXOR⊕

flow;
13: Aj.CountTable[l].FlowCount -= 1;
14: for flow in Sj − Si do
15: Update Si and Ai same as Sj and Aj;
16: for i=1..N do
17: result = SingleDecode(Ai);
18: if result ̸= ∅ then
19: finish = false;
20: Si.add(result);

=0
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flowsets: A1..AN, and the corresponding sets of flows we get from SingleDecode S1..SN. For any two

neighboring Ai and Aj, we check the all the flows we can decode from Ai but not Aj (i.e., Si − Sj)

to see if they also appear at Aj’s flow filter. We remove those flows that match Aj’s flow filter from

Aj. We then run SingleDecode for all the flowsets again, get the new groups of S1..SN and continue

checking the neighboring pairs. We repeat the whole process until we cannot decode any more flows

in the network.

Note that if we have the routing information of each packet, FlowDecode can speed up, because

for one decoded flow at Ai, we only check the previous hop and next hop of Ai instead of all neigh-

bors.

CounterDecode at a single switch: Although we can easily decode the flows using FlowDecode,

we cannot decode the counters of them. This is because the counters at A and B for the same flow

may not be the same due to the packet losses and on-the-fly packets (e.g. packets in A’s output

queue). Fortunately, from the FlowDecode process, we may already know all the flows in one en-

coded flowset. That is, at each cell, we know all the flows that are in the cell and the summary of

these flows’ counters. Formally, we know CountTable[i].PacketCount =
∑

∀f,∃j,HC
j (f)=i f.PacketCount

for each cell i. Suppose the flowset hasmc cells and n flows, we have a total ofmc equations and n

variables. This means we need to solveMX = b, where X is the vector of n variables andM and b

are constructed from the above equations. We show how to constructM and b in Algorithm 9.

Algorithm 9 Linear equations for CounterDecode
1: functionConstructLinearEquations(A, S)
2: M=ZeroMatrix; b=ColumnVector;
3: for flowt in S do
4: for j=1..kc do
5: l =HC

j (flowt);M[l,t] = 1;

6: forCountTable[j] in A do
7: b[j] = CountTable[j].PacketCount;
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Solving a large set of sparse linear equations is not easy. With the fastest solver lsqr (which is based

on iteration) in Matlab, it takes more than 1 minute to get the counters for 100K flows. We speed

up the computation from two aspects. First, we provide a close approximation of the counters,

so that the solver can start from the approximation and reach the result fast. As the counters are

very close across hops for the same flow, we can get the approximated counters during the FlowDe-

code. That is, when decoding Ai with the help of Aj’s flows (Algorithm 8 line 7 to 21), we treat the

counter from Aj as the counter in Ai for the same flow. We feed the approximated counters to the

solver as initial values to start iteration, so that it can converge faster. Second, we use a loose stop-

ping criterion for the iteration. As the counter is always an integer, we stop the iteration as long as

the result is floating within a range of±0.5 around an integer. This significantly reduces the rounds

of iteration. By these two optimizations, we reduce the computation time by around 70 times.

4.4.3 Analysis of Decoding Errors

SingleDecode: We now perform a formal analysis of the error rate in an encoded flowset. Suppose

the flow filter uses kf hash functions andmf cells; and the counting table has kc hash functions and

mc cells with sc bits per cell. The total memory usage ismc · sc +mf. Assume there are n flows in the

encoded flowset. For the flow filter, the false positive for a single new flow (i.e., the new flow being

treated as an existing flow) is (1 − e−kfn/mf)kf . Thus the chance that none of the n flows experience

false positives is
∏n−1

i=1 (1 − (1 − e−kfi/mf)kf). When the flow filter has a false positive, we can detect

it by checking if there are non-zero PacketCounts after decoding. In this case the counters are not

trustful, but we still get all the flows.

For the counting table, the decoding success rate of SingleDecode (i.e., the chance we can decode

all the flows) is proved to be larger thanO(1 − n−kc+2), ifmc > ckcn, where ckc is a constant asso-

ciates with kc 92. When we fail to decode some flows in the counting table, the already decoded flows
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and their counters are correct.

We choose to use separated flow filter and counting table rather than a combined one (i.e. the

counting table also serves as a bloom filter to test new flow), because a combined one consumes

much more memory. For a combined one, for each packet, we check the kc cells it is hashed to, and

view this flow as a new flow if and only if at least one of these kc cells’ FlowCount is 0. However,

this solution requires far more memory than the separated solution. This is because for the counting

table, a good parameter setting is about kc = 3 andmc = 1.24nwhen n is larger than 10K based

on the guidelines in92 and our experiences in § 4.5. In such a parameter setting, when we treat the

counting table as a Bloom filter, the false positive rate for a new flow is (1− e−kcn/mc)kc is larger than

99.9%. To keep the false positive rate low enough for all the n flows, we would have to significantly

increase kc andmc.

NetDecode: We discuss FlowDecode and CounterDecode separately. For FlowDecode, we first

consider a simple pair-decode case, where we run NetDecode between two nodes with the same set

of flows. This can be viewed as decoding n flows in a large counting table with 2kc hashes and 2mc

cells. This means we will need only half of the number of cells of the counting table with 2kc hashes

with SingleDecode. In our experiment, we only needmc = 8K for decoding 10K flow appear at

both sides, which is even fewer than the number of flows.

For the more general network-wide FlowDecode, if all nodes in the network have more flows

than expected and require FlowDecode, the decode success rate is similar to the pair-decode case.

This is because for each node A, decoding its flows is similar to decoding the pair of A’s flowset and

the sum of flowsets from all the neighbors containing A’s flows. However, it is more likely that only

a portion of the nodes have more flows than expected, and the rest can SingleDecode. In this case,

the decode success rate is higher than the pair-decode case.

For CounterDecode, we need at least the same number of linear equations as the number of

variables (per flow counters). Because we have one equation per cell, we need the number of cellsmc
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to be at least the number of variables n. In practice,mc should be slightly larger than the n, to obtain

a high enough chance of having n linearly independent equations.

The complete NetDecode process is bottlenecked by CounterDecode not FlowDecode. This is

because CounterDecode requires more memory and takes more time to decode. Since Counter-

Decode only runs on a single node, the memory usage and decoding speed of NetDecode at a node

mostly depends on the number of flows in its own decoded flowset, rather than the number of other

flowsets that contain similar flows.

4.5 Evaluation

In this section, we demonstrate that FlowRadar can scale to many flows and large networks with

limited memory, bandwidth, and computing overhead, through simulations on FatTree topologies.

4.5.1 Scale to Many Flows

Parameter settings We set up a simulation network of FatTree with k = 8 (80 switches). We set the

number of flows on each switch in 10ms from 1K to 1000K. We generate an equal number of flows

between each inter-Pod ToR pair. We then equally split these flows among ECMP paths. In this

way, each switch has the same number of flows. We set the flow filter to ensure that the probability

that one of the n flows experiences a false positive is 1/10 of the SingleDecode failure rate of the

counting table. We set the optimal kf andmf according to the formulas in § 4.4.3. We set kc = 4

because it is the best for NetDecode. We selectmc based on the guidelines in92. We set the size of

FlowCounter according to the expected number of flows. We conservatively set both NetFlow and

FlowRadar packet counters as 4 bytes, although in FlowRadar we collect statistics in a short time

scale and thus would see much fewer packets and needs fewer bytes for the packet counter. Since

our results are only related to the number of flows but not the packets, we generate a random set of
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Figure 4.3: Memory usage per switch

flows as input.

We run decoding on 3.60GHz CPU cores, and parallelize decoding different flowsets on multiple

cores.

The memory usage of FlowRadar is close to NetFlow with a perfect hash table: We first com-

pare the memory usage between NetFlow and FlowRadar. As discussed in § 4.2, it is almost impossi-

ble in merchant silicon to implement a hash-based design that handles flow insertions and collisions

within the per packet time budget. If we implement a simple hash table, it would take 8.5TB to

store 100K flows to ensure a 99% chance that there are no collisions. The actual data structure used

in custom silicon would be proprietary information. Therefore, we compare with the best possible

case for NetFlow—a perfect hash table without any collisions.

Even with a perfect hash table, NetFlow still needs to store in each cell the starting time of a

flow and the time the flow is last seen for calculating inactive timeout (4 bytes each). However, in

FlowRadar, we do not need to keep timestamps in hardware because we use frequent reporting in a

short scale. To fully decouple the benefit of FlowRadar data structure and removing timestamps, we

also compare with perfect hashing without timestamps, which can be viewed as the optimal case we

can reach.
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Figure 4.4: Bandwidth usage per switch

Figure 4.3 shows that NetFlow with perfect hashing needs 2.5MB per switch. FlowRadar needs

only 2.88MB per switch with SingleDecode and 2.36MB per switch with NetDecode to store 100K

flows with 99% decoding success§, which is +15.2% and -5.6% compared to 2.5MB used by Net-

Flow. The best possible memory usage with perfect hashing without timestamps is 1.7MB per

switch. With 1M flows, we need 29.7MB per switch for SingleDecode and 24.8MB per switch

for NetDecode, which is +18.8% and -0.8% compared to NetFlow with perfect hashing and times-

tamps.

FlowRadar requires only a small portion of bandwidth to send encoded flowsets every 10ms.

Figure 4.4 shows that we only need 2.3Gbps per switch to send encoded flowsets of 100K flows with

10ms time slot, and 0.23Gbps with 100ms time slot. In Facebook datacenter and traffic setting156,

a rack switch connects to 44 hosts with 10Gbps links, where each host send at most 100s to 1000s

of concurrent flows in 5ms. Suppose there are a total of 2K*44 flows in 10ms in the rack switch,

FlowRadar only incurs less than 0.52% of bandwidth overhead (2.3Gbps/(44*10Gbps)) with 10ms

time slot.

§Note that even in the 1% of cases we cannot successfully decode all flows, we can still decode 61.7% of the
flows on average.
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Figure 4.5: Extra #flows using NetDecode
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Figure 4.6: Decoding ঞme

FlowRadar with NetDecode can support 26.6-30% more flows than SingleDecode, with more

decoding time. Operators can configure FlowRadar based on the expected number of flows.

When the number of flows goes beyond the expected number, we can use NetDecode to decode

more flows given the same memory. Figure 4.5 shows with 1K to 1M expected number of flows,

NetDecode can decode 26.6-30% more flows than SingleDecode given the same memory. So our

solution can tolerate bursts in the number of flows.

Figure 4.6 shows the average decoding time of each flowset for the case with 100K expected flows.

When the traffic is below 100K flows, the collector can run SingleDecode to quickly detect all the

flows within 10ms. When the traffic goes beyong 100K flows, we need NetDecode, which takes

283ms and 3275ms to decode flowsets with respective 101K flows and 126.8K flows.

We break down the NetDecode time into CounterDecode and FlowDecode. The result is shown

in Figure 4.7. As the number of flows increases, the CounterDecode time increases fast, but the

FlowDecode time remains low. If we just need to decode the flows, we need only 135ms, which is

very small portion compared to CounterDecode’s 3140ms. Note that the burst of flows does not

always happen, so it is fine to wait for extra time to get the decoded flows and counters.

We do not rely on the routing information to reduce the NetDecode time, because it only helps

reduce the FlowDecode time, which is only a small portion of the NetDecode time. The routing

information can help reduce the FlowDecode time by 2 times.

125



���

����

�����

������

���� ���� ���� ���� ���� ���� ����

�
��

�
�
��
��
��
��
�
��
��
��
��
��
���
��
�
��

����������������������

����������������������
���������������������

�������������

Figure 4.7: Breakdown of NetDecode Time

4.5.2 Scale to Many Switches

We now investigate how FlowRadar scales with larger networks. For direct comparison, we assume

the same number of flows per switch with different network sizes.

The memory and bandwidth usages per switch do not change with more switches: This is be-

cause the decoding success rate only relates to the number of flows and number of cells. Obviously

this is true for SingleDecode. For NetDecode this is also true, because as long as all flows appear in at

least 2 flowsets, NetDecode’s decoding rate is similar no matter howmany flowsets the flows appear

in. The reason is that the bottleneck of the number of flows can be decoded is from CounterDe-

code, which is independent from other flowsets. For flowsets with 102.5K cells, two such flowsets

can already decode more than 110K flows, but the CounterDecode can only support 100K flows

(limited by the number of linearly independent equations).

Decoding requires proportionally more cores with more switches: The SingleDecode time per

switch only relates to the number of flows in a flowset. For example, to decode 100K flows within

10ms, we need the same number of cores at the remote collector as the number of switches. This

means for a network with 27K servers (K=48 FatTree) and 16 cores per server, we need about 0.65%

of the servers for the decoding.
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Figure 4.8: FlowDecode Time with different network size

NetDecode only happens during bursts of flows. The decoding time per switch increases slowly

with more switches, because most time is spent on CounterDecode, which only relates to the num-

ber of flows in a flowset.

The FlowDecode time increases with larger networks, because it takes more time to check a de-

coded flow with the neighboring switches, when there are more neighbors in a larger network. In

a FatTree network, suppose each switch has k neighbors. The total number of switches in the net-

work is n = 5
4k

2, so each flowset only checks with O(
√
n) other flowsets. We tested the FlowDecode

time with different FatTree network sizes by increasing k from 4 to 16. The memory on each switch

is set expecting 100K flows for SingleDecode. We generate traffic such that the number of flows on

each switch reaches the maximum number (126.8K) that could be NetDecoded. Figure 4.8 shows

the result. The FlowDecode time increases linearly with k. However, it is still a small portion com-

pared to CounterDecode time. For 126.8K flows per switch and k = 16 FatTree, FlowDecode only

takes 0.24 seconds, which is 7.1% of the total decoding time. Routing information can speed up

FlowDecode to 0.093 seconds, which is 2.9% of the total decoding time.
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Figure 4.9: A flow path that has cycle

4.6 FlowRadar Analyzer

We show two use cases of FlowRadar: transient loop and blackhole detection with network-wide

flow analysis and providing per-flow loss map with temporal analysis.

4.6.1 Transient Loop/Blackhole Detection

With FlowRadar, we can infer the path for each flow by concatenating the switches that have records

for that flow. As a result, we can easily provide a network-wide map of all the loops and blackholes,

the time they happen, and the flows they affected.

Loops: We first identify all the switches that see the same flow during each time slot. If the switches

form a cycle, then we suspect there is a loop. We cannot conclude that there is a loop because this

may be caused by a routing change. For example, in Figure 4.9, we may observe counters at all the

switches in one time slot with FlowRadar, which forms a cycle (S2,S3,S4,S5). However, this may

be caused by a routing change from S1→ S2→ S5 to S1→ S2→ S3→ S4→ s5 within the time

slot. To confirm, we need to compare the counter on the hop that is not in the cycle (counter1), and

the counter on one hop in the cycle (counter2). If counter1< counter2 then we can conclude that

there is a loop. For example, if counter on S1< counter on S3, we know this is a loop.

Blackholes: If a transient blackhole is longer than a slot’s time, we can detect it by seeing the path

of some flows stopped at some hop. If a transient blackhole is shorter than a slot’s time, we still see a

large difference between the counters before and after the blackhole at one slot. Note that we do not

need the counters, but only the flow information to detect blackhole. Thus, during flow bursts, we
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can run FlowDecode without CounterDecode to detect blackholes faster.

Evaluation: We create a FatTree k=4 topology with 16 hosts and 20 switches in DeterLab3. We

modify Open vSwitch10 to support our traffic collection. We direct all the packets to the user space

and maintain the encoded flowsets. We install forwarding rules for individual flows with different

source and destination IP pair.

We send persistent flows from each host to all the other hosts, which send one packet every 5ms.

This is to make sure that each flow has at least one packet in each time slot even if some packets is

close to the slot’s boundary.

We simulated a case that a VMmigration causes a transient loop when the routing table on the

edge switch S1 of the old VM location is updated so it sends packets up to the aggregation switch

S2. But S2 has not been updated so it sends packets back to S1. We manually updated a rule at

the edge switch S1 at around 10ms, which forms a loop S1→ S2→ S1, where S2 is an aggregation

switch. We can detect the loop within 10ms.

To generate a blackhole, we manually remove a routing rule at an edge switch. We can detect the

blackhole within 20ms. This is because there are still traffic in the first 10ms when the blackhole

happens. So we can only confirm in the next 10ms.

4.6.2 Per-flow Loss Map

FlowRadar can generate a network-wide loss map by comparing the per-flow counters between the

upstream and downstream switches (or hosts) in a sequence of time slots. A simple approach is that

for each flow, the difference between the upstream and downstream counters is the number of losses

in each time slot. However, this approach does not work in practice because it is impossible for the

two switches capture exactly the same set of packets, even though today’s datacenters often have well

synchronized clocks across switches at milliseconds level. This is because there are always packets on
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the fly between upstream and downstream switches (e.g., in the switch output queue).

To address this problem, we can wait until the flow finishes to compare its total number of pack-

ets at different hops. But this takes too long. Instead, we can detect losses faster by comparing coun-

ters for flowlets instead of flows. Suppose a time slot in FlowRadar is 10ms. We define flowlets as

bursts of packets from a flow that are separated by gaps larger than a time slot108. With FlowRadar,

we can identify flowlets between two time slots with counters equal to zero. Given a flowlet f, the

upstream and downstream switches collect sequences of counters: U1...Ut andD1...Dt (D0 andDt+1

are zero). We compute the total number of losses for the flowlet f as
∑t

i=1(Ui) −
∑t

i=1(Di). This

is because if a packet does not arrive at the downstream switch for at least 10ms, it is very likely this

packet is lost.

With this approach, we can get the accurate loss numbers and rates for all the flowlets that have

finished. The key factor for our detection delay is the duration of flowlets. Fortunately, in datacen-

ters, many flows have short flowlets. For example, in a production web search workload57, 87.5% of

the partition/aggregate query flows are separated by a gap larger than 15ms. 95% of query flows can

finish within 10ms. Moreover, 95% of background large flows have 10-200ms flow completion times

with potential flowlets in them.

Evaluation: We evaluate our solution in a k=8 FatTree topology in a ns-3 simulator50. The FatTree

has 128 hosts connected with 80 switches using 10G links. We take the same workload distribution

from a production web search datacenter57, but add the 1000 partition-aggregate queries per sec-

ond with 20 incast degree (i.e., the number of responding nodes) and packet sizes of 1.5KB. The

queue size of each port in our experiment is 150KB which means 100 packets of size 1.5KB. The

flowlet durations are mostly shorter than 30ms with the maximum as 160ms. 50% of background

traffic has 0ms interarrival time indicates application sends a spike of flows. The rest at least 40% of

background traffic has interarrival time larger than 10ms for periodical update and short messages.

We run FlowRadar to collect encoded flowsets every 10ms at all the switches. We define detec-
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Figure 4.10: CDF of loss detecঞon delay

tion delay as the time difference between when the loss happens and when we report it. Figure 4.10

shows the CDF of loss detection delay. We can detect more than 57% of the losses within 20ms, and

more than 99% of the losses within 50ms.

4.7 Implementation

We now discuss the implementation issues in FlowRadar.

Encode and export flow counters at switches: FlowRadar only requires simple operations (e.g.,

hashing, XOR, and counting) that can be built on existing merchant silicon components. For ex-

ample, hashing is already used in Layer 2 forwarding and ECMP functions. With the trend of pro-

grammable switches (e.g., P413), FlowRadar can be easier to implement.

We have implemented our prototype in P4 simulator14, which will be released at4. We use an

array of counters to store our counting table and flow filter. On each packet’s arrival, we use the

modify_field_with_hash_based_offset API to generate the kc hash values for counting table and

kf hash values for flow filter, and use bit_xor API to xor the header into the flowXOR field. In the

control plane, we use the stateful_read_counter API to read the content in our data.
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Since the encoded flowset is small, we can export the entire encoded flowset to the collector rather

than exporting them on a per flow basis. To avoid the interruptions on the data plane during the

exporting phase, we can use two encoded flowset tables: the incoming packets update one table

while we export data in another table. Note that there is a tradeoff between the memory usage and

exporting overhead. If we export more often (with a smaller export interval), there are fewer flows in

the interval and thus require fewer memory usage. Operators can configure the right export interval

based on the number of flows in different time scales and the switch performance. For this paper, we

set the time interval as 10ms.

Deployment scenarios: Similar to NetFlow, we can deploy FlowRadar’s encoded flowset either per

port or per switch. The per-switch case would use less memory than per-port case because of multi-

plexing of flows. That is, it is unlikely that all the ports experience a burst in terms of the number of

flows at the same time.

In the per-switch case, we still need to distinguish the incoming and outgoing flows (e.g., the

two unidirectional flows in the same connection). One way to do this is to store the input port and

output port as extra fields in the encoded flowset such as InputPortXOR and OutputPortXOR as

what we did for the 5-tuple flow fields.¶ Another way is to maintain two encoded flowsets, one for

incoming flows and another for outgoing flows.

FlowRadar can be deployed in any set of switches. FlowRadar can already report the per-flow

counters in short time scales independently at each deployed switch. If FlowRadar is deployed at

more switches, we can leverage network-wide decoding to handle more number of flows in a burst.

Note that our network-wide decoding does not require full deployment. As long as there are flows

that traverse two or more encoded flowsets, we start to gain benefits from network-wide decoding.

Operators can choose where to deploy, and they know the flows where they deployed FlowRadar. In

¶Similarly, one can easily add other flow properties (e.g., VLAN) as XOR sum fields.
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the ideal case, if all switches are deployed, then we know the per-flow counters at all locations, and

the paths of the flows. Operators could also choose a subset of switches. For example, if we deploy

only on ToR switches, the counters still cover all the events (e.g. loss) in the network, but we no

longer know the exact locations where the flows appear in the network. As we mentioned in §4.5.2,

the decoding success rate does not change as long as we have at least 2 flowsets, so partial deployment

does not affect decoding success rate.

4.8 Related Work

4.8.1 Monitoring Tools for Datacenters

Due to the problems of NetFlow, datacenter operators start to invent and use other monitoring

tools. In addition to sFlow177 and EverFlow190, there are other in-network monitoring tools. Open-

Flow140 provide packet counters for each installed rules, which is only useful when the operators

know which flows to track. Planck153 leverages sampled mirroring at switches, which may not

be sufficient for some monitoring tasks we discussed in § 4.2. There are also many end-host based

monitoring solutions such as SNAP which captures TCP-level statistics182 and pingmesh96 which

leverages active probes. FlowRadar is complementary to the end-host based solutions by providing

in-network view for individual flows.

4.8.2 Measurement Data Structures

There have been many hash-based data structures for measurement. Compared to them, FlowRadar

has three unique features: (1) Store flow-counter pairs for many flows; (2) Easy to implement in

merchant silicon; (3) Support network-wide decoding across switches.

Data structures for performance measurement and volume counting: Varghese et. al. proposed
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a group of data structures for loss, latency, and burst measurement116,171. However, none of these

solutions can maintain per flowmetrics and scale to a large number of flows. There are many hash-

based data structures that can keep per-flow state with small memory67,183,164,187. However, most

of them do not suit for NetFlow because they can only keep the values (i.e., per flow state). Instead,

FlowRadar provides the key-value pairs (i.e., the flow tuples and the packet counters) and can scale

to a large number of flows.

Hash-based data structures for storing key-value pairs: Cuckoo hashing150 and d-left hash-

ing62,174 are two hash table designs that can store key-value pairs with lowmemory usage. However,

both are hard to implement in merchant silicon for NetFlow. This is because NetFlow requires in-

serting a flow immediately for an incoming packet so that follow up packets can update the same

entry (i.e., atomic read-update operations). Otherwise, if one packet reads a cell that is being up-

dated by a preceding packet, the counters become incorrect. Today, merchant silicon already has

transactional memory that supports read-update operations in an atomic way for counters. How-

ever, typical merchant silicon can handle read-update operations against only a few (up to four) 4B-

or 8B-long counters for each packet∥. This is because to support high link rate of merchant silicon

(typically a few Tbps today), merchant silicon must resort to a highly-parallelized packet-processing

design, and the atomic-execution logic is at odds with such parallelism. In fact, to support such

atomic read-update semantics for a small number of counters, merchant silicon has to employ vari-

ous complicated hardware logic similar to operand forward11.

A d-way Cuckoo hash table150 hashes each key to d positions and stores the key in one of the

empty positions. When all the d positions are full, we need to rebuild the table by moving items

around to make room for the new key. However, this rebuilding process can only be implemented

with switch software (i.e., the control plane), because it requires multiple, and often-unbounded

∥Note the total number of counters can still be larger; only the number of concurrently read-and-
updatable counters is small.
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number of memory accesses150. Running the rebuilding process in switch software is not suitable

for NetFlow, because NetFlow requires atomic read-update semantics.

d-left hashing splits a hash table with n buckets into d equal subtables each with n/d buckets,

where each bucket contains L cells to hold up to L keys. d-left hashes a new key to d buckets, one

in each subtable, and put the key in the bucket with the least load, breaking ties to the left. d-left

requires first reading all Ld cells and testing if there is any match for an incoming flow. If there is a

match, we increment the counter; otherwise, we put a new entry in an empty cell in the least-loaded

bucket. There are two key challenges in supporting d-left: First, rather than read-update operations,

d-left requires atomic read-test-update operations. The testing logic requires not only more ALUs

andMUXes but also significantly increase the complexity of the atomic operation logic, making

the critical section much longer in time. Second, d-left can only make insertion decisions after the

testing on all Ld cells (each cell with 13 bytes 5-tuple fields and 4 bytes counter) are finished, which

also increases the size of the atomic operation logic. Longer atomic operation duration can be a

disaster for highly parallelized packet processing in merchant silicon.

In contrast, FlowRadar is easier to implement in merchant silicon, because of three reasons: First,

FlowRadar only requires atomic read-update operations (i.e., increment/xor) rather than atomic

read-test-update, which is much simpler in silicon design and has shorter atomic operation duration.

Second, FlowRadar only requires atomic operations on a single cell and packets can update different

cells in parallel. Thus FlowRadar requires significantly shorter atomic operations and is better fit for

merchant silicon with high line rate.

It is impossible to support d-left with today’s merchant silicon because the smallest d-left config-

uration (i.e., d = 4 and L = 1) needs to atomically read-test-update 4*17=68B, but today’s silicon

only supports 4*8B=32B. Thus, we compare FlowRadar with the basic d-left setting (i.e., d = 4

and L = 1) that may be supported in future silicon, and the setting recommended by68 (i.e., d = 3

and L = 5) which is even harder to implement. To hold 100K flows on a memory of 2.74MB, the
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basic d-left has an overflow rate of 1.04%; both FlowRadar and the recommended d-left have no

overflow. During flow bursts, FlowRadar can still report flows even when the counters cannot be

decoded. Such flow information can be used for a variety of tasks like transient blackhole detection,

route verification, and flow duration measurement. For example, to hold 152K flows in 2.74MB

memory, the basic d-left has an overflow rate of 10%; the recommeded d-left has an overflow rate of

1.2%; FlowRadar can still decode all 152K flows (but not their counters).

Invertible Bloom filter Lookup Table (IBLT): FlowRadar is inspired by Invertible Bloom filter

(IBF)84 and Invertible Bloom filter Lookup Table (IBLT)92. IBF is used to keep a set of items. By

comparing two IBFs, one can easily extract the differences between two sets. Rather then keeping a

set of elements, FlowRadar needs to collect a key-value store of flows and their packet counters.

IBLT is an extension of IBF that can store key-value stores. Our counting table is built upon

IBLT, but has two key extensions: (1) How to handle value updates. Since IBLT does not have a flow

filter before it to identify if a key is new or old, it treats an existing key with a new value as a new

key-value pair which has duplicated keys with existing key-value pairs. It then uses an arithmetic

sum instead of a XOR sum in FlowXOR field, and a sum of hash values of the flows instead of a

simple flow counter. This design takes more bits in both FlowXOR and FlowCount fields, which

takes as much memory as FlowRadar uses for the flow filter. It also requires computations over large

numbers (beyond 64bit integer), and more complex hash functions. Our experiments show that

IBLT saves only 2.6% of memory for 100K keys but at the expense of 4.6 times more decoding time.

(2) How to decode the keys. Our single node encoding scheme is similar to IBLT’s, but takes much less

time because of the simple FlowXOR and FlowCount fields. Moreover, with an extra flow filter, we

support network-wide flow and counter decoding across multiple encoded flowsets.
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4.9 Summary

We present FlowRadar, a new way to provide per-flow counters for all the flows in short time scales,

which provides better visibility in datacenter networks. FlowRadar encodes flows and their counters

with a small memory and constant insertion time at switches. It then introduces network-wide

decoding of flowsets across switches to handle bursts of flows with limited memory. Our design can

be improved in many aspects to further reduce the cost of computation, memory, and bandwidth,

such as reducing the NetDecode time and better ways to leveraging redundancies across switch

hops.
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5
LossRadar: Precise Per-loss Telemetry

5.1 Introduction

Packet losses are common in datacenter networks and can happen for a variety of reasons. For exam-

ple, Jeff Dean’s keynote79 indicates on average in a production datacenter for one year, up to 40-80

machines can experience packet losses, 4 network maintenance jobs can cause 30-minute random

connectivity losses, and 3 router failures can cause immediate traffic blackholing for an hour. Such
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losses can significantly affect application tail latency and throughput especially when applications

often view losses as a signal of congestion. It also takes operators tens of hours to diagnose the root

causes of losses and recover from them.

It is important to detect losses fast and independent of the loss types (e.g., congestion, blackholes).

With fast loss detection, operators have enough time to diagnose their root causes and mitigate the

impact of losses. Being independent of loss types, we can capture all kinds of losses, especially unex-

pected ones such as those caused by hardware and software errors. Moreover, to diagnose the root

causes, operators often need the detailed location on where losses happen, and the packet header

information on what kind of packets get lost, the timing of losses, and other loss patterns.

Unfortunately, existing monitoring tools that are generic in capturing all types of network events

often fall short in capturing losses fast with enough details and low overhead. End-host based so-

lutions137,145,96 cannot provide the exact location information on where losses happen. Packet

mirroring190,98 either incurs large bandwidth overhead of mirroring all the traffic, or selectively

mirrors some packets and thus miss capturing all types of losses. Some counters at switches (e.g.,

SNMP counters) can report a few loss types (e.g., ACL drops) but often miss the other losses that

are harder to capture (e.g., caused by hardware and software errors). Flow-based monitoring tools

(e.g., FlowRadar129, NetFlow8) keep counters for individual flows and compare them across hops

to identify losses, which do not have the timing and sequence patterns of losses and have an over-

head associated with the number of flows (which can be large in large datacenters156). One com-

mon theme of these approaches is to detect loss by keeping records of ongoing flows and identify the

missing ones.

Due to the importance of loss in datacenters, we propose a specific monitoring system designed

for loss detection. Instead of keeping records whose overhead is proportional to the ongoing traffic

or flows, we propose to keep records whose overhead is proportional to the number of losses.

We propose LossRadar, a lightweight packet loss detection service that quickly reports the
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locations and 5-tuple flow information of individual lost packets in 10s of milliseconds. The very

basic component we introduce for LossRadar is a meter, a light-weight traffic digest generation

logic. We place several meters at various vantage points in a network. Then, each meter periodically

generates small digests summarizing all the traffic passing through itself and exports the digests to

a remote collector. The collector then decodes the digests exported by the meters. The way collec-

tor performs such analysis is inspired by the flow conservation rule in graph theory (and the current

conservation rule in electrical-circuit theory as well). Given any segments (a link, switch, or group

of switches) in a network and all uni-directional flows passing through the segment, the collector

compares between the traffic digests generated by all the meters surrounding the segment. Any

mismatch across the digests indicates packet losses, and the collector decodes the digest mismatch

further to restore the identifiers of each lost packet. We also introduce an analyzer that can identify

several (but not all) types of root causes of packet losses.

We design a Bloom-filter based data structure to collect traffic digests at each meter in real time

with three key benefits: (1) Its memory requirement only grows linearly with the number of lost

packets instead of all the transferred packets. (2) It keeps all the details of the lost packets such as 5

tuples, timing, and sequences of packets. (3) These traffic digests are generic to capture all types of

losses and can be easily implemented in today’s commodity switches.

Our extensive testbed evaluations with open vSwitch based prototype and large-scale packet-

level simulations show that LossRadar uses only 1.4% of memory usage compared to the state-of-

the-art approach when the loss rate is lower than 0.1%, and 0.5% of the bandwidth overhead of full

mirroring, while providing detailed information for all the lost packets.
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Table 5.1: Example types of packet losses

Loss types Example error places Mitigation Details
Congestion Buffer Re-schedule flows Flows, timing
Persistent blackholes Switch match-action tables, Controller Reboot, fix config Flows, sequences
Transient blackholes Controller, switch software Debug controller or switch software Flows, sequences, timing
Random drops switch hardware direct traffic away Flows, timing

5.2 Packet Loss in Datacenters

Packet losses not only significantly affect application performance but also make network manage-

ment tasks such as traffic engineering and diagnosis hard96. In this section, we first discuss the key

requirements of loss detection: fast detection to minimize the impact of losses, generic detection

of all types of losses, and capturing the locations and the headers of lost packets to help diagnosis.

Next, we discuss existing tools in datacenters which fall short in supporting these requirements of

loss detection with low overhead.

5.2.1 Requirements on Loss Detection

We summarize three key requirements on loss detection: (1) We need to detect packet losses fast to

minimize their impact. (2) We need a generic approach to capture all types of packet losses ranging

from congestion losses to random losses. (3) We need to know the locations and all the details of lost

packets (e.g., header fields) to infer their root causes.

Fast detection. Packet losses are common in datacenter networks. Studies have shown that, on aver-

age in a production datacenter for one year, up to 40-80 machines can experience up to 50% packet

loss rates, four network maintenance jobs can cause 30-minute random connectivity losses, and

three router failures can cause immediate traffic blackholing for an hour79. Microsoft also reports

one to ten new blackholes every day in a datacenter96.

Packet losses often have significant impacts on application performance and network operations.
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Figure 5.1: Switch packet processing pipeline

Just a few non-congestion-related losses can cause significant tail latency increase and throughput

drop (especially because TCP treats them as congestion signals)139,15, leading to violations of service

level agreements (SLAs) and revenue drops of online services81,175. Moreover, it often takes opera-

tors tens of hours to identify whether a failure or performance problem is caused by packet losses,

where losses happen, which flows are affected, and finally identify the root causes of losses and fig-

ure out fixes9,23.

Instead, we need a loss detection solution that can identify losses and narrow down their root

causes fast (e.g., in tens of milliseconds). In this way, we can give operators enough time to iden-

tify their root causes or take actions to eliminate these losses, in order to minimize their impact on

applications and network operations.

Generic detection of all loss types. Losses can be related to different components in the network

(Figure 5.1) and be caused by different reasons. It is impossible to enumerate all types of losses,

so we highlight a few common ones normally reported in datacenters to illustrate the diversity of

losses.

Congestion: Congestion loss happens at the output buffer and is caused by multiple flows compet-

ing for the same output port, and the total rate exceeds the capacity of that port.

Persistent blackholes: The persistent blackhole is a kind of problem that drops all packets matching

a certain “pattern” at a switch96,190. Persistent blackholes could be caused by match-actions table

corruptions96,190 or the controller misconfiguring the rules.

Transient blackholes: The transient blackhole is similar to the persistent blackhole, but only during

a short period. Transient blackholes could be caused by non-atomic rule updates120 or network-
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wide inconsistent updates105.

Random drops: The random drop is a type that the switch persistently drops packets randomly

without reporting96,190. Random drops could be caused by component problems such as not-well-

seated linecards or faulty links96.

Of course, there are many other losses we have not mentioned here. Such a diversity of losses

demands a tool that can detect all losses regardless of the types.

Capturing location information. The first step to diagnose a packet loss is to identify the loca-

tion of it—which switch, NIC, or host that incur the packet loss. Knowing the location, we can

take quick actions (e.g., reboot the switch, reroute the traffic) to quickly mitigate the impact179 or

analyze the flows at the location to help diagnose the root causes96.

Capturing packet header information. We need to distinguish different types of losses to identify

the best solution to mitigate these losses (Table 5.1). For example, if there are congestions, opera-

tors can re-schedule the flows to avoid congested links or move the applications to other servers. For

persistent blackholes, we need to reboot the switches to fix table corruptions, or to correct the mis-

configurations at the controller. If there is a transient blackhole, it helps operators to identify and fix

the bugs in the controllers or switch softwares. If there are silent random drops, operators have to

shut down and RMA (return merchandise authorization) the faulty components96.

To distinguish different types of losses and understand the impacts of losses, we need different

types of details. (1) flow information such as 5 tuples (source, destination IP addresses, ports, and

protocol). Different flows may have different loss patterns, so it is important to know the 5 tuples.

Also, such 5-tuple information can indicate the applications affected by the losses and allow oper-

ators to take fine-grained actions to help these applications. (2) Timing information. Many types

of losses are very short, such as congestions or transient blackholes, so it is good to know the timing

of each individual loss, which can help identify the temporal pattern of the losses. (3) Loss pattern.

It is also important to identify the loss pattern, because different types of losses have different loss
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Table 5.2: State-of-the-art datacenter monitoring soluঞons

Loss detection tools Detection time Generic Location Header info Overhead
Host monitoring 137,145 10s of ms Yes No Yes Host CPU
Pingmesh 96 10s of seconds Only persistent losses Infer No Host CPU
Mirroring 190 10s of ms Miss congestion Yes Yes B/w prop. to # packets
Flow-level counters 129 After a flow(let) ends Yes Yes Only flow info Memory prop. to # flows
LossRadar 10s of ms Yes Yes Yes Memory prop. to # losses

patterns (e.g., blackhole losses are continuous, while others may not be).

5.2.2 Existing Monitoring Tools

In datacenters, there have already been a lot of monitoring tools. Some of them can be used for

detecting packet losses. However, we now show that these solutions fall short in achieving the above

goals. Due to the importance of loss detection in datacenters, we need a newmonitoring tool that is

specifically designed for packet losses.

End host based solutions. End host based solutions137,145 can capture losses at the TCP level or

by inspecting packets at the hypervisors. Although these solutions can capture all the details of lost

packets independent of their types, it is hard to pinpoint the exact location of packet losses.

Pingmesh96 can infer the location of packet losses through all-to-all probing, but cannot identify

the exact switch that causes the problem within the leaf or spine groups. However, it does not track

the packet losses of the actual applications. Moreover, its probing frequency is at least 10 seconds to

reduce its overhead. Thus, it may miss many transient losses that happen between probes.

Packet mirroring at switches. Everflow190 selectively mirrors packets to the collector, so the opera-

tors can know the traces of packets matching pre-selection filters and can detect losses by identifying

those packets that do not have complete traces to reach the destination. However, it is not good at

capturing most types of losses, and it is unclear if the packets get lost or if the report to the collectors

gets lost.
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Counters at switches. Switch vendors provide various counters (e.g., SNMP) to indicate the health

conditions and operations at switches, some of which are related to losses. However, due to the

diversity of loss types, it is difficult to identify and implement the right set of counters.

FlowRadar129 captures per-flow counters at each switch at a fine time scale (e.g., 10s of millisec-

onds). One can use FlowRadar to detect packet losses by comparing the counters at two nearby

hops. However, since it is hard to synchronize the counters to capture the same batch of packets, we

often have to wait for a flow ends (or a flowlet ends with enough idle time after it56). The memory

usage for FlowRadar is proportional to the number of flows we need to capture.

5.2.3 LossRadar Design

Instead of relying on generic monitoring tools which often fall short in loss detection, we propose

to build a monitoring tool specific to loss detection given the prevalence and importance of packet

losses in datacenters. We propose to design a new loss detection solution that can capture all types

of losses that happen at anywhere anytime and identify individual lost packets, while keeping the

overhead low.

Generic to all types of losses. To detect losses regardless of their types and root causes, our key

idea follows the Flow Conservation Rule: The set of packets that comes into any network domain (a

link, a switch module, a switch, or an area of network devices) should be equal to the set of packets

that leaves the domain, as long as the domain does not include any packet sources and sinks (e.g.,

middleboxes, hosts)∗.

Fast detection of losses and their locations. Based on the Flow Conservation Rule, we design

LossRadar as shown in Figure 5.2. LossRadar installsmeters to capture uni-directional traffic

∗We recognize that a network switch can occasionally behave as a packet source or sink for certain types
of packets (e.g., routing protocol messages, switch management protocol messages). Those packets, how-
ever, can be easily and unambiguously distinguished and hence can be filtered out from the LossRadar
mechanism.
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before it enters and after it leaves a domain in the network (called upstream and downstreammeters).

Each meter encodes the unique identifiers for individual packets into a traffic digest, and period-

ically reports traffic digests to a central LossRadar collector. LossRadar collector compares

traffic digests from upstream and downstreammeters, detects violations of the Flow Conservation

Rule, and reports detailed information of lost packets.

Capture packet header information with low overhead. Wewant to store detailed information

(e.g., 5 tuples, timing, sequences) to help the diagnosis of lost packets. However, switches have lim-

ited memory (only tens of MB for all the counters and match-action tables). Thus, it is important

to capture important information about packet losses in limited memory. Rather than keeping in-

formation about all the traffic (e.g., FlowRadar129), we propose to build a traffic digest whose size is

proportional to the number of packet losses independent of the total traffic or flows in the system.

With LossRadar, operators only need to provision the switch memory based on the number of

losses they expect and the amount of details they need. When the number of losses goes beyond the

expected number, LossRadar can still report the total number of losses at each location but may

miss the detailed information such as 5 tuples for some losses. This is reasonable because when there

is a large number of losses at a place, it is more important to reboot the entire switch or direct traffic

away from it.

To collect more useful details of unknown lost packets, operators may also choose to pre-filter ex-

pected losses (e.g., those packets dropped by access control list) by specifying the right set of packets

that LossRadar needs to keep in its traffic digests.

Challenges: There are three key challenges in building LossRadar:

Small size digests: To capture individual lost packets and their detailed information with low over-

head, we proposed data structures that can capture all the packets in the digest while keeping the

digest small enough to reduce the storage, bandwidth, and processing overhead. The key insight is

we leverage coding techniques84 to only keep information about lost packets. (§5.3)
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Figure 5.2: LossRadar architecture (Red circles are meters)

Meter placement: To locate where losses happen in the network, we identify the right places to

install meters that can cover the entire network. In some networks where we cannot deploy meters

at all places, we can still install the meters at some locations that can narrow down the potential

location of losses. (§5.4)

Loss analyzer: Given the details of losses, we design temporal and spatial loss analysis algorithms

that can quickly identify some root causes such as blackholes, congestions and random drops. More-

over, we develop algorithms that can identify the set of rules that may cause the blackhole. (§5.5)

5.3 LossRadar Traffic Digests

In this section, we describe the design of traffic digests with lowmemory overhead and the benefits

of our design, and then discuss the challenges in collecting the digests.

5.3.1 Capturing Losses with Small Digests

We observe that although the number of packets in the network is too large for the meters to keep

track of, the number of lost packets are much smaller. Thus if we can only keep track of the lost

packets rather than all packets, we can reduce the overhead a lot. The question is how to track lost

packets? Our idea is to keep traffic digests at an upstreammeter and a downstreammeter. When we
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meter; (c) the result of the subtracঞon contains only lost packets

compare the two meters, the same packets at both digests will cancel out, so only the packets that do

not appear at the downstream (i.e., lost packets) remain in the result. In this way, the digest size only

needs to be large enough for the number of losses, not the total number of packets.

We build traffic digests using Invertible Bloom Filter (IBF)84, as shown in Figure 5.3. The digest

has an array of cells. Each cell contains two values: xorSum and count. When a packet x arrives, we

insert it into k cells. Each cell is updated as xorSum = xorSum ⊕ x.sig, count = count + 1. The

x.sig denotes x’s signature, which includes the immutable header fields that can uniquely identify

the packet (e.g., 5-tuple and IP_ID) and other information about the packet, which we will discuss

in §5.3.2. The k cells are indexed by k hash functions (h1 … hk) calculated on x.sig.

Figure 5.3 (a) and (b) shows two traffic digests, each of which is taken at the upstreammeter UM

and the downstreammeter DM respectively. The upstream digest contains four packets from two

flows, and the downstream one contains only one packet—the other three are lost.
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To identify lost packets, the digest collector subtracts each cell i in DM’s digest from the corre-

sponding one in UM’s digest. That is: Li.xorSum = UMi.xorSum ⊕ DMi.xorSum; Li.count =

UMi.count − DMi.count. We can decode lost packets from the digest difference L as follows: We

first find the cells of L that contain exactly one packet (i.e., count = 1) which are called pure cells.

The xorSum of a pure cell is exactly the signature of the packet in it. We then remove the packet

from all the k cells in which the packet was hashed into. Once this is done, some other pure cells

may appear, and we repeat the same process for them. By doing this iteratively, we can retrieve all

packets in Lwith a very high probability (we will explain this in §5.3.2). For example, in Figure 5.3

(c), we first identify a pure cell whose count is 1 (F2.P1). After removing F2.P1, we get the packet

F1.P1 (the 4th cell’s updated count is 1); and finally after removing F1.P1, we decode F2.P2.

5.3.2 Benefits of Digests

There are two benefits of the digests.

The size of the digest in the meter is proportional to the number of lost packets, but not the

total number of packets that go through the meter. Suppose bothUM andDM have ncell cells.

Then L, as a result of the subtraction, also has ncell cells. Because L only needs to be large enough

to decode the nloss lost packets, ncell is determined by the nloss. Existing works have shown that ncell

only needs to be proportional to nloss (i.e., c = ncell
nloss is a constant) to achieve a high success rate for

decoding all losses†. Eppstein et al.84 shows empirically that c = 1.3 to achieve a 99% success rate

when nloss > 1000 for k = 3. Thus, we only need to set the size of the digest in data plane with a

small c times the expected number of losses to achieve a high success rate.

Because packet loss rate is very low (less than 0.01%) in datacenters96, we only need small sized

digests. Thus we set our digest size small enough to capture lost packets based on an upper bound of

†A success for decoding all losses means we can always find a pure cell until all lost packets are decoded.
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expected loss rate R (e.g., 0.1%). When the loss rate is below R, we can decode individual lost pack-

ets with high probability (e.g., >99%). When the loss rate is above R, however, we can still detect the

total number of lost packets per port, but may fail to identify individual lost packets. This is because

the digest may have so many lost packets in each cell, and thus the occurrence of pure cells become

progressively less probable. Note, however, this may be still be quite acceptable for most network

admins because, when the loss rate is this high, it is much more crucial to take urgent action to fix

the problem (e.g., shut down the link or the switch) than to diagnose the problem or to account for

individual losses to particular applications that are affected.

We can include a lot of details we are interested in of each lost packet. The basic setting is to

include two pieces of information in the signature of a packet. (1) Flow-level information. We store

the 5-tuple information to provide enough details of individual packets. (2) Packet identifier. We

use the IP_ID field because the IP_ID field is consecutive within each 5-tuple, so it can be used to

uniquely identify a packet. In case the IP_ID field is not sufficient (e.g., if more than 64K packets

from a single flow are monitored in a single monitoring window), we can include other fields such

as fragment offset, TCP sequence number or a small fraction of the payload in the signature. In the

basic setting, each signature is 120 bits‡.

Additionally, operators can configure to include any other fields of a packet that they are inter-

ested in (e.g., TCP flags). Note that if the field changes across hops, we need to consider that. For

example, if we want to include TTL, and the TTL will decrement h in between, operators need to

configure the DM to insert TTL + h instead of TTL into the digest. Operators can also include

other metadata that are related to but not part of the packet, such as the timestamp when the packet

arrives at the UM. In this case, the UM needs to tag the metadata in the packet header, so that the

DM can use the same value. Including other fields require more bits in the signature. For example,

‡104 bits for 5-tuple, and 16 bits for IP_ID.
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if we include the TCP-SYN bit, TTL (only need 1 bit to distinguish zero and non-zero) and times-

tamp, we need to extend the signature by 16 bits§, which are used in our loss root cause analysis

(§5.5).

5.3.3 Digest Configuration

With LossRadar, operators only need to provision the switch memory based on the number of

losses they expect and the amount of details they need. When the number of losses goes beyond the

expected number, LossRadar can still report the total number of losses at each location but may

miss the detailed information such as 5 tuples for some losses. This is reasonable because when there

is a large number of losses at a place, it is more important to reboot the entire switch or direct traffic

away from it.

To collect more useful details of unknown lost packets, operators may also choose to pre-filter

expected losses (e.g., those packets dropped by access control list) by specifying the right set of pack-

ets that LossRadar needs to keep in its traffic digests. Recent programmable switches can export

information of which packets they decide to drop because of access control lists or buffer overflow

(e.g., using negative mirroring, which is presented at P4 workshop). With these techniques, we can

also exclude the lost packets known by switches, and thus focus LossRadar digests on those losses

the switches cannot diagnose.

5.3.4 Measurement Batch

To capture packet losses in near real time, we capture packets in batches at both upstream and

downstream. So the operator needs to ensure the same packet goes to the same batch in both the

upstreammeter and the downstreammeter.

§1 bit for TCP-SYN, 1 bits for TTL, and 14 bits for microsecond-level timestamp in 10ms (214us>10ms).
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To report packet losses in near real time, meters should keep collecting traffic digests for a small

batch of packets every T (e.g., 10ms) and immediately report the digests to the central collector as

soon as the batch is over. To compare traffic digests correctly across meters, however, we need to

ensure that a pair of upstream and downstreammeters must agree on the boundary of batches so

that they can put the same packet in the same batch. Otherwise, digests will always end up with

mismatches. Unfortunately, relying on time-synchronization protocols or devices (e.g., NTP141,

PTP20, GPS) to let meters agree on batch boundaries has fundamental limitations: no matter how

accurate the time-sync protocol can ensure, there could always be packets on the fly, i.e. packets that

leave the upstreammeter, but have not arrived at the downstreammeter. Hence, if we rely on the

time-sync protocols, batch disagreement is inevitable.

Another possible solution is to use signal packets to synchronize the starting and ending times

of a pair of upstream and downstream batches. However, if the signal packet is dropped or gets

reordered, some packets may be classified into the wrong batch.

To work with packet losses and reordering, we propose to let each packet carry a batch identifier

to tell the downstreammeter which upstream batch the packet belongs to. Thus which batch at the

downstream a packet belongs to is not based on the packet’s arrival time, but the batch_ID it carries.

If there is no packet reordering, a downstream batch can be terminated when a packet with a new

batch_ID arrives. However, if there is reordering (e.g., due to different priority queues), packets

from different batches may interleave at the downstreammeter, so multiple downstream batches

have to coexist. As a result, we set the lifetime of a downstream batch to T + timeout, starting at

the first packet’s arrival of this batch. The downstream batch is timeout longer than the upstream

batch, which is for the delay in between. The operator can set the value of timeout based on their

expectation of the maximum delay.

There is one question raised that howmany downstream batches can coexist at the same time,

which is related to the memory consumption. In datacenters, the RTT is a few hundreds of mi-
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croseconds57, and per-hop delay should be shorter, so for T > 1ms, there will be at most two

batches coexist at a downstreammeter.

5.4 Network-wide Deployment

In this section, we discuss where to install the meters to detect packet losses that happen at any place

in the network, and pinpoint the exact loss locations. We consider two cases: When we have access

to all the devices in the network, or we only have access to some switches.

5.4.1 Cover the Entire Network

We need to install meters to meet two goals: (1) Each pair of meters covers a segment of paths where

packets have a unique path. In this way, we can easily compare the traffic digests taken at a pair of

meters (upstream and downstream) to identify lost packets; (2) All pairs of meters together cover the

entire network. In this way, we would not miss any packet loss event.

The high-level idea is to install one upstreammeter at each output port of every switch, and one

downstreammeter at each input port of every switch as shown in Figure 5.4a. In this way, both

directions of every link are covered. Note that although we do not draw in Figure 5.4a, there is also

traffic from S2 to S1, so actually we also need an upstreammeter at S2’s output port connected

to S1, and a downstreammeter at S1’s input port connected to S2. In fact, we need two pairs of

upstreammeter and downstreammeter for each bidirectional link. We only draw one pair in Figure

5.4a for conciseness.

Then, given the packet processing pipeline of a switch, we need to figure out at which stages to

install the meters. Considering that losses could happen at any stage of the pipeline, we need to

make sure the meters cover every part of the data plane. We choose to put the meters at the end

of the ingress pipeline of tables, and before the shared buffer, as shown in Figure 5.4b. And, we
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Figure 5.4: Placing meters to cover the enঞre network (solid and empty circles are respecঞve upstream and
downstream meters)

put the upstreammeters before the downstreammeters within a switch, rather than the other way

around, so that the segments between the upstreammeters and downstreammeters are also covered.

In addition, we install meters for each network interface at hosts.

We choose this place to install meters for 2 reasons. First, at the place where upstreammeters are

installed, the decision of which output port(s) a packet goes to need to have been made, so that the

switch knows which upstreammeter (output port) to insert the packet into. Thus, the meters must

be after all the ingress pipeline of tables, because the decision could be made at any of the ingress ta-

bles. Note, by doing so, we can handle multicast by inserting the packet into the upstreammeters of

all the output ports it goes to. Second, the timestamp collected at this stage is the closest to the time

a packet is enqueued, so the timestamp can be used to describe the temporal pattern of congestion

losses. By doing so, we make the most use of the timestamp of the packet.

5.4.2 Incremental Deployment

We do not expect LossRadar to be deployed at all the switches in datacenters at once. Now we

consider the incremental deployment case where only a subset of the switches support LossRadar.

We define blackboxes as those areas where we cannot install the meters. The strawman approach is

to install one meter at each port of the blackbox and compare across meters. When meters do not

have synchronized clocks, we propose to let each meter maintain multiple small digests instead of

one. Moreover, our solution can reduce the memory usage of the strawman approach by almost 2
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times.

Strawman approach. Intuitively, we can insert an upstreammeter at each entrance to the blackbox,

and a downstreammeter at each exit of the blackbox. Each upstreammeter and downstreammeter

maintains one digest. To retrieve the losses, we can add up the digests at all upstreammeters and

the digests at all downstreammeters respectively, and compare the two sums. Here adding up two

digests a and bmeans for each corresponding cell i, ai.xorSum⊕ bi.xorSum, ai.count+ bi.count. So

the sum is also a digest of the same size with a and b.

The memory usage of each digest in this case is larger than in a non-blackbox case. The reason is

as follows. Let us call the size of a digest in a non-blackbox case as normal size. Suppose there are n

upstreammeters and n downstreammeters. During the comparison of the two sums, the total num-

ber of losses could be n times of the number of lost packets from a single upstreammeter. Thus, the

size of the sum digest has to be n times of the normal size. As a result, the size of the digest at each

meter has to be the same with the sum, which is n times of the normal size.

Handle unsynchronized clock across meters. The problem with the strawman solution is that

if the clocks of the upstreammeters are not well synchronized, packets from the same batch of the

same upstreammeter may arrive at different batches at one downstreammeter. For example (Figure

5.5a), UM-a’s batch 1 is earlier than UM-b’s batch 1. The packet a1 fromUM-a’s batch 1 goes to

DM-x, and starts the downstream batch 1. The packets fromUM-b’s batch 1 also goes to DM-x.

The packet b1 from the early part of UM-b’s batch 1 arrives at the late part of DM-x’s batch 1, since

DM-x’s batch 1 has already started for a while. The packet b2, however, arrives after DM-x’s batch 1

ended. So b1 and b2 are in the same upstream batch, but end up in different downstream batches.

As long as the clocks of the upstreammeters are not accurately synchronized, there is always a

chance of batch disagreement.

Solution. Our solution is that each downstreammeter maintains separate digests for each upstream

meter, as shown in Figure 5.5b. To detect the packet losses, we can add up all the digests for the
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same upstreammeter across all the downstreammeters (e.g., the digests for UM-a’s batch 1 at DM-x

and DM-y respectively), and compare the sum with the digest at the upstreammeter (e.g., UM-a’s

batch 1). Thus, we can identify all the lost packets between one upstreammeter and all its down-

streammeters.

Note that the downstreammeters do not always know which upstreammeter a packet comes

from. Our solution is to let each upstreammeter mark its meter ID in the packet header.

This solution has another benefit that it reduces the memory usage. In the strawman approach,

the size of each digest (no matter at an upstream or a downstream) is n times of normal size. In our

solution, however, we compare one upstream digest with the sum of its corresponding downstream

digest, so the total number of losses in each comparison is just the number of lost packet from one

upstreammeter, not all upstreammeters. So the size of each digest only needs to be normal size.

Thus, although each downstreammeter maintains n separate digests, the total size is still n times of

normal size. But for each upstreammeter, the total size is only normal size, which is reduced by n

times.

In practice, each port of a blackbox can be both entrance and exit, so each switch connects to

the blackbox need to install both upstreammeter and downstreammeter. In this case, the memory

usage reduction is 2n/(n+ 1) per switch, which is almost 2 times.
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5.5 Loss Analyzer

Using the detailed information of lost packets, we build an analyzer to classify the causes of packet

losses by analyzing traffic digests across the network over time. The loss analyzer consists of (1) a

root cause analyzer, which uses only the loss information from LossRadar to analyse the root

causes of the losses, and (2) an ACL rule corruption analyzer as an application of the root cause

analyzer, which can infer the corrupted rules of an ACL table based on the correct version of the

ACL (from controller) and the blackhole losses from the root cause analyzer.

5.5.1 Root Cause Analyzer

The root cause analyzer classifies the reasons for the losses on each individual switch. In a short time

(e.g., 10ms) at one switch, we assume losses are dominated by one reason, so we can identify the root

causes by recognizing the unique patterns of different types of losses, given the details collected by

LossRadar. We then relax the assumption to handle multiple problems all causing losses.

5.5.1.1 Classification based on loss patterns

We can classify the losses based on the unique patterns of different types of losses, given the details

such as 5 tuples, IP_ID, TTL, timestamps and TCP flags. We list the common types of losses here.

For other uncommon types, we classify them as unknown. However, after diagnosis, we can extract

patterns of them based on the details we have, and use the patterns for future classification.

Congestion. We observed that the congestion losses are bursty, and the gap between back-to-back losses

is only a few microseconds. The TCP sends a batch of packets every RTT, and the flows that experi-

ence losses will shrink their congestion windows, so in the next RTT congestion is much less likely

to happen. Thus the congestion losses are bursty.

The gap between back-to-back losses is only a few microseconds because the transmission time of
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a packet is microsecond level. For 10G link, the transmission time of a 1500B packet is 1.2μs. Thus,

even if the total receiving rate is only 10% higher than the sending rate of an output port, there will

be one loss every 11 packets, which is one loss every 13.2μs.

Blackholes. We observed three different loss patterns.

(1) Bursty and consecutive losses within a flow . If a blackhole happens and affects ongoing large flows

(e.g., file transferring, video delivering), the affected ongoing large flows have consecutive lost pack-

ets, and the losses are bursty.

(2) Non-bursty and consecutive losses within a flow . If a blackhole happens and affects some ongoing

small flows, which only carries small pieces of data (e.g., sending messages), the affected ongoing

small flows have consecutive, but non-bursty losses.

(3) Only a SYN packet loss from each flow . In the above two cases, each flow has multiple losses, but

there are cases some flows only have one loss for more than a few seconds. After further investiga-

tion, we found that these lost packets are mostly SYN or SYN-ACK. This means that for the new

flows, their handshake packets are dropped, so there are no follow-up packets until the retransmis-

sion of the SYN packet, which waits for a few seconds (normally 3 seconds for the first retransmis-

sion, then the waiting time doubles).

Random drops. The random drops are evenly distributed over time. This is because random drops

are caused by problematic hardware components of a switch, which randomly drops packets passing

it with certain drop rates.

Loop. Packets dropped by loops have TTL = 0. So we can use the TTL field to detect the losses

caused by loops.

5.5.1.2 Root cause inference algorithms

There is still a small chance that during a given time period, there may be multiple types of losses

together, which blurs the patterns. Thus, we design the root cause inference algorithms based on
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two principles. (1) Identify bursty losses first. We identify bursty losses first because other types

of losses have long term patterns (e.g., random drops are evenly distributed over time, and the SYN

packets dropped by blackholes should represent a large fraction of losses), which can be blurred

by the burst of losses. (2) It is fine to correctly classify only one type of losses when multiple

types are mixed. This is because we can fix the problems for one type of losses first. Moreover, if

the missed types are caused by persistent problems, we can detect them in the future when they are

not mixed. (3) Keep the false alarm rate low for blackholes and random drops, because both of

them require human involvement: operator needs to check the switch configuration for blackholes,

and hardware components for random drops. Thus, when blackholes/random drops are mixed with

congestion, we believe classifying the losses as congestion losses is better¶.

Before performing the inference algorithm, we first exclude the expected losses such as packets

dropped by ACL tables. All the expected losses can be pre-filtered by programmable switches. If the

switch does not support pre-filtering, the collector can easily identify this kind of losses by match-

ing the lost packets against the table rules. We also exclude losses with TTL = 0, which could be

dropped by loops, or are expected by the applications (e.g., traceroute). We can map the 5-tuple of

the lost packets to the application to decide if the loss is expected or not.

The algorithm has two steps on different time scales: (1) For each new batch, we classify the

bursty losses; (2) Every long_term_interval (e.g., 100ms), we classify the remaining losses (from

multiple batches) into non-bursty types. We now describe the algorithm.

Analysis of bursty losses. We first perform an analysis of bursty losses for each new batch at each

port (Algorithm 10). A burst is identified by at least nburst losses with gaps less than tgap between

back-to-back losses. A burst of losses may be caused by either congestion or blackholes. If a flow’s

losses are non-consecutive in this burst, it cannot be caused by a blackhole, so we know there is con-

¶We understand that different networks have different requirements, so operators may use other princi-
ples if necessary.
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gestion. In this case, according to the design principle (3), we classify the whole burst as congestion

losses (Line 13 to 16). If all losses are consecutive, we only classify the flows that lost almost one con-

gestion window (#losses > nbb∥) as blackhole losses, and the rest as congestion losses (Line 17 to

19).

Our idea to measure the consecutiveness is to examine the IP_ID of the lost packets. In current

Linux, the IP_ID of each 5-tuple is consecutive70, so we can use the IP_ID to determine if the losses

are consecutive or not.

We should set tgap large enough and nburst small enough to detect slight and short congestion, but

still keep the probability of randomly dropping nburst packets with less than tgap back-to-back gap

low. nbb should be set slightly lower than the bandwidth-delay product for flows with still-growing

windows, while large enough to keep the probability of congestion dropping nbb consecutive pack-

ets of a flow low.

Long term analysis. Every long_term_interval (e.g., 100ms), we classify the rest of the losses (Algo-

rithm 11).

We first classify the consecutive losses within a flow as blackhole losses (Line 2 to 4), because its

per-flow pattern is not affected by other types of losses, and after removing these losses, the pattern

of other losses are clearer. We set a small threshold nnb∗∗ (line 3) for the length of the consecutive

losses. nnb needs to be large enough to keep the probability of randomly dropping nnb consecutive

packets of a flow low.

After that, for the rest of the packets, we first classify SYN losses as blackhole losses (line 6 to 8) if

the fraction of SYN packets in an interval is large (> psyn). psyn should be set large enough to keep

false alarm rate low. Finally, we measure the distribution of the rest of the losses over time (line 9

to 10). We divide the time interval into n (number of losses) equal bins, and count the fraction of

∥bb stands for Bursty Blackhole
∗∗nb stands for Non-bursty Blackhole
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non-empty bins (bins with at least one loss) in all bins. We empirically estimate this fraction using a

simple experiment: we randomly throwm balls intom bins following even distribution, and count

the fraction of non-empty bins. The fraction is around 0.63 for differentm. This fraction gives an

upper bound of prand, because in practice packets’ arrivals are non-uniform.

In practice, we should set nburst ≤ nnb, because otherwise if a congestion loss burst of n packets

where n < nburst contains≥ nnb consecutive losses of a flow, the losses of that flow would be

classified as blackhole losses.

Algorithm 10 LossRadar bursty loss analysis
1: function bursty_loss_analysis(B: a new batch of losses)
2: Mark the types of all losses in B as unknown;
3: burst = find_next_burst(B);
4: while burst != Null do
5: classify_burst(burst);
6: burst = find_next_burst(B);
7: function find_next_burst(B)
8: Find the next Bi...j that Bk+1.time − Bk.time < tgap, and the gap before Bi and after

Bj is larger than tgap;
9: while j− i+ 1 < nburst do
10: Find the next Bi...j;
11: return Bi...j;
12: function classify_burst(burst)
13: for flow f in burst do
14: if f’s lost packets have non-consecutive IP_ID then
15: Mark all losses in burst as congestion;
16: return ;
17: for flow f that has more than nbb losses in burst do
18: Mark all losses of f as blackhole;
19: Mark losses in burstwhose types are unknown as congestion;
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Algorithm 11 LossRadar root cause inference
1: function long_term_analysis(L: all losses at a port in long_term_interval)
2: for flow f in L do
3: if f’s lost packets have consecutive IP_ID and #(unclassified losses) >= nnb

then
4: Mark losses in fwhose types are still unknown as blackhole;
5: rest = all the losses in Lwhose types are still unknown;
6: if fraction of SYN packets in rest > psyn then
7: Mark all the SYN packets’ types in rest as blackhole;
8: Remove the SYN packets from rest;
9: if random_distribution(rest) then
10: Mark all packets’ types in rest as random;
11: function random_distribution(L)
12: n = number of losses in L;
13: Divide the time period of L into n equal time interval T1...n;
14: Count the number of losses in each Ti;
15: if fraction of Ti that has losses > prand then
16: returnTrue;
17: return False;
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5.5.2 Rule Corruption Detection

For blackhole losses, after confirming with the configuration, we can determine if there are miscon-

figurations or not. If not, there must be rule corruptions. We develop algorithms that can locate the

set of rules whose corruption may cause the blackhole. We take the access control list (ACL) table

as an example. Given the list of blackhole losses and ACLs, we need to identify the rule that may

get corrupted. For simplicity, we only consider one bit flip in the table, which is the most common

case. There are three cases for unexpected losses: (a) a deny rule’s match field corrupted, so it denies

flows originally not covered by it; (b) an accept rule’s match field corrupted, and the flows originally

covered by it nowmatch other deny rules; (c) an accept rule’s action changes to deny. We enumerate

all three cases. For case (a), we enumerate all deny rules in the correct ACL table, and find the candi-

dates whose match field corrupted by one bit would match all unexpected loss. For case (b) and (c),

we check if all unexpected loss all match the same rule in the correct ACL table. If so, then this rule

is a candidate. Our evaluation in §5.7.4 shows that this algorithm often narrows down the candidate

rule set of 2-2.5 rules and always successfully cover the corrupted rules.

5.6 Implementation

We implemented LossRadar in both Open vSwitch10 and P4 behavioral model12.

5.6.1 Open vSwitch Implementation

Wemodify Open vSwitch to support traffic digest collection. We direct all the packets to the user

space and collect traffic digests there. We create a sending thread which sends digests at the end of

each batch to a digest collector via a persistent TCP connection. Each time the collector receives

both the traffic digests from a pair of upstreammeter (UM) and downstreammeters (DM), it runs
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the decoding process to report lost packets.

5.6.2 P4 Implementation

At a high level, we put LossRadar’s functions in two tables, at the end of the ingress pipeline. The

first table is for updating UMs, and the second is for DMs. We now inspect the different compo-

nents needed by LossRadar.

Storing traffic digests. LossRadar’s traffic digest is implemented on the register in P4. We de-

fined two arrays of registers for xorSum and count respectively. The width of each register in the

xorSum array is set to the total number of bits in a packet’s signature (5-tuple, IP_ID, TTL, TCP

flag, timestamp, etc.). The lengths of the arrays are the number of cells ncell, which is defined by

users according to their expected number of losses.

Each port of a switch has a UM and a DM. Each meter keeps two digests for different batches

of packets. We put all 2nport upstream digests in an array††, and all 2nport downstream digests in

another array. The i-th cell in the b-th batch of the p-th port is indexed by i+ (b · nport + p) · ncell.

Updating digests. This includes calculating hash values based on the packets’ signatures, and up-

dating the cells indexed by these hash values. We define 3 hash functions, calculated on a field_list

that is defined to include the signature of each packet. The signature is a bit different for UM and

DM. The mutable part of the signature (e.g., timestamp and TTL) for the DM should be the same

as the part for the UM at the previous hop. So each UM uses the timestamp at this hop, and each

DM uses the timestamp carried by the packet. The DM uses TTL+1 instead of TTL to cancel out

the decrement between hops.

Getting timestamps. LossRadar uses timestamps when packets are inserted into the UM. In

current P4 behavioral model12, among the timestamps exposed, the closest to our need is the times-

††For brevity, we conceptually treat the two arrays for respective xorSum and count as one array.
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tamp when the switch starts processing the packet (ingress_global_timestamp). This choice sacri-

fices the time spent in the ingress pipeline, which, however, is stabler and smaller (sub-microsecond)

than the queuing delay, so it is also useful for congestion detection. We believe in future programmable

switch design, exposing timestamp at arbitrary stages in the pipeline is possible.

Pre-filtering. In P4, every packet go through the whole pipeline, including the ones dropped by

tables. So we can pre-filter the table-dropped packets by inserting them into only the DM (not the

UM). In this way, these packets will cancel out with the UM in the previous hop, without affecting

decoding other lost packets. We add a metadata dropwith a default value 0 for each packet, and

update it to 1 in the dropping actions of the tables. At the UM, we use a matching field to filter out

packet with drop = 1.

Header modification. LossRadar needs the header to carry batchID and optionally the times-

tamp and meterID (if in a blackbox case). We either store these data in unused header fields (e.g.,

VLAN, DSCP) or add a header, and modify parsers or add a parser for these data accordingly.

Each hop needs to modify the batchID and timestamp in the header to the ones the UM uses.

However, this modification cannot be performed before or at the UM, because after the UM,

the DM needs the previous hop’s batchID and timestamp, which is carried by the header. Thus,

we store the new batchID and timestamp in a metadata at the UM, and copy the metadata to the

header after the DM finishes the update.

5.7 Evaluation

Our evaluation focuses on answering five key questions:

1. What is the memory and bandwidth usage of LossRadar, and how they compare to other

solutions such as FlowRadar129 and full packet mirroring190,98? We test them with a single pair

of switches with traffics of different loads and different loss rates. We use simulation to test up to
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100G traffic load. The result shows that LossRadar always uses less memory than FlowRadar in

large datacenters where the number of flows is large and less bandwidth than full mirroring.

2. Under realistic network traffic, how effective are the detection and the root cause infer-

ence of LossRadar? We run a network with 80 switches and 128 hosts in ns-3 simulations and

evaluate LossRadar with different traffic, different loss patterns and loss rates. The result shows

that we only need a few KB per digest to capture more than 99.99% lost packets. Our root cause

inference algorithm can capture all the root causes within a few 100s ms.

3. What is the memory usage per switch for different deployments? We evaluate a full deploy-

ment and different types of blackboxes cases, based on the same topology, traffic and loss problems

in the previous question. The result shows that the memory usages per switch in blackbox cases are

higher than in a full deployment, but are still acceptable.

4. How fast is the loss detection? Our result in a testbed with Open vSwitch10 on a FatTree

topology shows that the detection delay is only 12ms.‡‡

5. Is the information LossRadar provides useful? We show two applications that use the loss

details to improve performance and identify corrupted rules.

5.7.1 Bandwidth and Memory Overhead

We set up a simulation with a simple topology where there are two switches. By default, we use 10G

traffic, and the average packet size is 175B according to Facebook’s datacenter traffic156. We change

the traffic volume and the number of concurrent flows during the experiment for comparison with

different state-of-the-art solutions. For LossRadar, each meter in LossRadar reports the digests

every 10ms. Because it is possible that we fail to decode a digest, the size of the digest we tested is

large enough so that it can decode all losses with 99% probability.

‡‡We evaluate the delay with Open vSwitch rather than P4 behavior model due to performance concerns.
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Figure 5.6: Bandwidth usage: LossRadar vs.
NetSight
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Figure 5.7: Memory usage: LossRadar vs.
FlowRadar.

Bandwidth usage of LossRadar is much less than full packet mirroring. Both Everflow190

and NetSight98 capture packets at every hop in the entire network and sends them to a centralized

analyzer. While Everflowmirrors raw packets, NetSight introduces compression to reduce the over-

head. Thus we compare with NetSight’s best compression (Van Jacobson style compression plus

gzip compression), which is reported 10Bytes per packet. In order to detect every loss, we configure

it to capture every packet.

We evaluated the bandwidth usage with different traffic volume from 4Gbps to 100Gbps, and

two loss rates 0.1% and 1%, and show the percentage of LossRadar bandwidth usage to full

packet mirroring bandwidth usage in Figure 5.6. The result shows that LossRadar saves 95%

and 99.5% of the bandwidth usage, for 1% and 0.1% loss rates respectively. For example, for 10Gbps

traffic, full packet mirroring uses 513Mbps, while LossRadar only uses 2.9Mbps for 0.1% loss

rate, and 25.6Mbps for 1% loss rate.

LossRadar saves memory when the number of concurrent flow is large or loss rate is low,

compared with FlowRadar. FlowRadar129 maintains per-flow counters at switches. It can get the

loss counter by comparing the packet counters across hops. Its memory usage is proportional to the

number of concurrent flows.

We perform experiments to find the number of concurrent flows, loss rate and throughput at
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which LossRadar and FlowRadar need the same amount of memory, and plot the curves in Fig-

ure 5.7. The red, orange and blue curves are for 3Gbps, 5Gbps and 10Gbps (which is also a 40G

link at 25% utilization) throughput respectively. In the area above the curves LossRadar uses less

memory; below the curves FlowRadar uses less memory.

We also calculate and plot the average number of flows in 10ms at a cluster switch in Facebook.

In Facebook, each server talks to 250 different racks in 5ms on average, and a cluster has 4 cluster

switches and at least 64 racks. Thus, assuming each rack has 44 hosts (assuming the top of rack

switch has 48 ports, 4 of which is connected to cluster switches), the total number of concurrent

flows on average could be 352K in 10ms at a cluster switch. The green dotted line represents this

number. This means that as long as the loss rate <5% at 10 Gbps, LossRadar uses less memory

than FlowRadar. At a lower throughput, LossRadar can even support a higher loss rate (up to

10% and 20% for 5Gbps and 3Gbps) while using less memory than FlowRadar.

5.7.2 Detection and Inference Effectiveness

We evaluate the fraction of losses being detected given different amounts of memory and the accu-

racy of the root cause inference, under realistic traffic with injected random drops and blackholes.

We run larger networks and higher link speed in the ns-3 simulator. We simulate a k=8 FatTree

topology, which includes 16 core switches, 8 pods (8 switches per pod), and 128 hosts, all connected

with 10G links. The simulated switch per-packet processing time is 5μs (not including queueing

delay). We deploy 1536 meters in total at switches and hosts.

To get realistic packet inter-arrival times, traffic distribution across switches, and realistic loss pat-

terns, we implement DCTCP57 and ECMP in the simulator. We take the same workload distribu-

tion from production datacenter57, but add 1000 partition-aggregate queries per second to generate

incast-related congestion losses. We set the default incast degree (i.e., the number of senders to one
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Figure 5.8: Memory usage under realisঞc traffic

receiver in a query) as 20. The query traffic characteristics also follow the study in57. By default, we

set the total traffic volume as 40% of the input bandwidth (i.e., 40%× 1280Gbps in our topology),

and a network-wide loss rate of 0.1%. (Note that the per switch port loss rate can go much higher.)

We also inject blackhole and random drops. We select 3 bidirectional links to have 1% random

drops, one for each layer (host to ToR, ToR to Aggr, Aggr To Core). We also select 3 switches (a

ToR, an Aggr and a Core) to have blackholes. The blackhole is blocking a randomly selected specific

destination IP address. Both the random drops and the blackholes are inserted in the middle of

the simulation (not at the beginning). Moreover, we choose the time to inject the blackholes so

that they will drop some ongoing large flows, in order to have all types of loss patterns (discussed in

§5.5.1.1).

5.7.2.1 Loss detection accuracy

LossRadar needs a small digest size to capture most losses. We evaluate different digest sizes

and show the percentage of lost packets being captured in Figure 5.8 for different incast degrees.

A captured lost packet means the packet is retrieved from the digest. With a 20 incast degree, we

just need 2KB digest size to capture around 90% of lost packets. Note that LossRadar can still
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get the right number of losses at each switch, but only provide details for 90% of these packets. We

need 7.6KB to capture the details for more than 99.99% of the lost packets. With a 40 incast degree,

the network-wide loss rate grows from 0.1% to 0.3%. Thus we need 14.25KB to capture more than

99.99% of the lost packets.

LossRadar can capture most batches successfully with a small digest. We also evaluate the

percentage of batches where all lost packets in the digest of that batch are successfully retrieved

(Figure 5.8) as compared with all the batches with at least one loss here. With a 40 incast degree, we

need 6KB per digest to capture around 90% of the batches. The percentage of captured batches is

more than the percentage of captured lost packets because LossRadar sometimes fails to decode

some packets when there are too many lost packets in a batch. For these batches, it is ok to just get

the total numbers of losses because they have large numbers of losses and operators should inspect

the entire switch port.

5.7.2.2 Root cause inference accuracy

We run our root cause inference on all the losses we get from the trace, and classify each loss into

congestion loss, random drop, blackhole loss, or unknown reason. We set the digest size to 7.6KB

according to §5.7.2.1. We set the parameters according to the guideline described in §5.5.1.2, as

shown in Table 5.3. We compare the inference result with the ground truth, and show the precision

and recall of the three types of losses in Figure 5.9. We also vary each parameter within a range while

keeping other parameters with default values; the error bars in the figure shows the range of the

precisions and recalls over all these different settings.

The precision is close to 100%. We design the algorithm to keep the false alarm rates of blackholes

and random drops low. The high precision shows our algorithm achieves this goal. The precision of

blackholes is 100%, which means there is no false alarm.

With different parameter settings, the precisions of random drops are all above 97.6%. The preci-
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Table 5.3: Root cause inference parameter seমngs

tgap (us) nburst nbb nnb psyn prand
Default 20 5 30 5 0.9 0.5
Range [10,30] [3,5] [20,50] [5,10] [0.85,0.95] [0.45,0.55]
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Figure 5.9: Root cause inference accuracy

sion of blackhole losses are almost all 100%, except when nbb = 20 it becomes 94.7%. We inspect

this case, and find that all false positives are 27 consecutive losses of a flow in a congestion. The

reason for such long consecutive losses is similar to the outcast problem152. However, this phe-

nomenon is exaggerated in simulation because all delays are deterministic.

Every injected problem is captured. We correctly classify 90.3% of the random drops and 73.1%

of the blackhole losses. The missed blackhole losses are all short bursts (e.g., 5 losses) of consecu-

tive losses, so they are classified as congestion losses. The missed random drops have two types: (1) a

small number of random drops happen closely (e.g., 3 random drops with gaps less than 10ms), so

they are classified as congestion losses; (2) during some intervals, there are other losses being classi-

fied as unknown together with random drops, so the distribution is uneven, and we classify all the

losses in these intervals as unknown. However, because the blackholes and the random drops are all

persistent, we always correctly classify the losses caused by them in the next few intervals. Thus, the
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classified losses are sufficient for us to detect all problems.

With different parameter settings, most losses of each type are correctly classified, and we detect

all problems as well.

5.7.3 Memory Usage in Partial Deployments

We evaluate the memory usage per switch in different deployment scenarios based on the same

topology, traffic pattern and injected problem in §5.7.2.

With a full deployment, we need 243.2KB for all the digests in each switch§§. We also evaluate

the memory usage when we do not have access to some parts of the network, which is treated as

blackboxes. In datacenters, upgrading a ToR switch requires notifying applications or tenants run-

ning under the ToR on the planned downtime, or migrating the applications or tenants to other

racks. On the other hand, upgrading an aggregation or a core switch is easier, because the traffic can

be automatically rerouted to other paths when the switch is shut down without affecting applica-

tions.

Thus we evaluate the case that we have access to aggregation and core switches but treat ToR

switches as blackboxes. We deploy more meters at the devices around the ToR switches. On an

aggregation switch, each of the 4 ports that connect to ToR switches receives packets from the 4

hosts under the ToR switch, which requires 4 downstreammeters; each port that connects to a

core switch only needs 1 downstreammeter. So each aggregation switch needs 20 downstreamme-

ters, plus 8 upstreammeters (one per port). We need 425.6KB for all the digests in each aggregation

switch.

We also evaluate other scenarios. If each aggregation switch is a blackbox, we need 608KB in

each core switch and each ToR switch. If each core switch is a blackbox, we need 608KB in each

§§7.6KB for each digest, two digests (batches) per meter, two meters (UM and DM) per port and eight
ports.
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Figure 5.10: Recovery from blackhole
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Figure 5.11: Recovery from random drops

aggregation switch.

5.7.4 LossRadar Applications

Improving flow throughput. We run four iperf flows (A, B, C, D) through two ECMP paths in

our FatTree testbed, with two flows on each path. The two paths share the same edge and aggrega-

tion switches but differ at the core. We inject two types of losses. One is blackholing flow A (Figure

5.10). LossRadar quickly identifies that flow A is experiencing blackhole, and installs an entry

matching flow A at the aggregation switch to moves A’s path to the other. The throughput recov-

ers after 250ms. The other case is randomly dropping 1% packets on A and B’s link (Figure 5.11).

LossRadar detects random drops on this link, so it moves both flows to the other path.

Correlating lost packets with ACLs. We use ClassBench ACL rules168 and staggered data center

traffic matching these rules as used in146. ClassBench has been shown to generates rules represen-

tative of real-world access control with accept and deny actions. The traffic is created by first gener-

ating staggered traffic for VMs and then assigning VMs with IP address ranges that match the ACL

rules. The details are described in146. We take four rule sets of 50K, 100K, 150K, and 200K rules.

We run the experiment 100 times by flipping a different random bit each time. We install the rules at

a single switch, and send the traffic through the switch.

We compare the upstream and downstream traffic digests collected to get the set of lost packets.
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Given the set of lost packets, our loss analyzer first excludes the intended drops based on the correct

set of rules, and then runs flow space correlation algorithm to narrow down the set of candidate

rules that may cause the loss. The whole process takes 0.7-2.5ms. Our result shows that we have zero

false negatives (i.e., the rule with flipped bit is always in our reported set). From 50K to 200K rules,

we narrow down to 2-2.5 candidate rules that may get bit flip. Sometimes a high priority rule which

covers all the losses is treated as a candidate rule but sometimes it is not the corrupted rule.

5.8 Discussion

Avoid modifying packet header fields. It is possible to avoid tagging headers with the batch ID

(§5.3.4) and the meter ID (§5.4.2), by tolerating on-the-fly packets.

Without the batch ID and the meter ID to synchronize batches, an on-the-fly packet would ap-

pear in two different batches at the upstreammeter and the downstreammeter, so it would appear

as a difference in both the two batches’ subtractions. Thus, we need to compare the results across

batches and identify the true losses (only appear once not twice). The number of batches to com-

pare depends on the time a packet takes from the upstream to the downstream, which is less than an

RTT—100s of microseconds in datacenters. Thus, as long as the batch length T > 1ms, we only

need to wait for one more batch to conclude a packet is lost or on-the-fly.

Now the downstream digest is no longer a subset of the upstream digest. We leverage the original

IBF design84, which can handle two-way set difference. We also need larger digests, because the

difference also include the on-the-fly packets besides the losses. With Sundial127, we expect the extra

size is extremely small. We leave the evaluation to future works.

Improving root cause inferences. Our root cause inference algorithms take the first step in iden-

tifying root causes for packet losses. There are a few ways to improve the inference: One way is to

use machine learning instead of threshold-based conditions to better classify different types of losses
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with dynamics. Another way is to incorporate the header patterns of blackholes (e.g., specific 5-

tuple or specific dest IP) to help better distinguishing blackhole losses from other types. In addition,

when a previously unknown type of losses happen, how the analyzer correctly reports the existence

of an unknown type is an open question.

Reducing memory usage for incremental deployment cases. In a blackbox case, each downstream

meter needs to maintain one digest for each upstreammeter, and the size of each downstream digest

has to be equal to the size of an upstream digest, which results in a high memory usage per switch.

If we can partition the the upstream digest based on which downstream each packet goes to, the

downstream digests can be smaller. This requires path-awareness at the upstream; we leave it to

future works.

5.9 Related Work

We discussed host passive mirroring137,145, Pingmesh96, Mirroring190, and FlowRadar129 in §5.2.2.

FlowRadar is the closest work to LossRadar, but differs in four aspects: (1) FlowRadar collects

per-flow counters at each switch, which can also be used for counting the aggregated number of

losses per flow. In contrast, LossRadar provides details of individual losses. (2) The memory us-

age of FlowRadar is proportional to the number of flows, while LossRadar’s is proportional to

the number of losses. Thus, the memory usage of LossRadar is lower than FlowRadar when the

loss rate is low, as shown in §5.7.1. (3) To detect loss, FlowRadar needs to compare flow counters

between two switches, and thus has to wait till an idle reporting interval (at least 10ms) to synchro-

nize the two counters. In contrast, LossRadar immediately detects the packet loss soon after a

reporting interval. (4) FlowRadar uses Invertible Bloom Lookup Table92 which also uses multi-

ple hash functions per item and has a similar decoding process to IBF84. The key difference is that

LossRadar utilizes the subtraction operation to cancel out the packets between upstream and
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downstreammeters. FlowRadar cannot use the subtraction, because each flow’s 5-tuple would can-

cel out in the subtraction, resulting in useless data.

Some other research solutions are available for loss detection. LDA116 leverages packet counters

to identify losses, but cannot identify individual lost packets and their flow information. NetSight98

can detect packet loss by sending the packet headers of all the packets at each hop to a centralized

controller, but incurs significant bandwidth overhead. In contrast, LossRadar provides detailed

loss information with lowmemory and bandwidth overhead.

Many research works on network verification111,110,114 performs static analysis of forwarding

tables, and thus can detect blackholes caused by misconfiguration. Complementary to network

verification, LossRadar capture all lost packets in the network in real time.

The paper72 allows the switch to send to end hosts the packet header information of those pack-

ets that are dropped due to congestion. Rather than focusing on one type of losses (misconfigura-

tion or congestion), LossRadar is generic to all types of packet losses.

Our traffic digest is inspired by Invertible Bloom Filters (IBFs)84. IBFs were introduced to iden-

tify two-way set differences for application-layer systems such as peer-to-peer networks and link-state

databases. Our loss detection is a one way set difference problem, where one set is always a subset

of the other. Therefore, we simplify the IBF design with XOR-based codes and counters, but store

more flow information in the XOR-based codes. Moreover, because our data structure is used at

switches with high-speed links, we face new challenges of synchronizing the data collection across

nodes, and identifying the lost packets among multiple upstream and downstreammeters around a

blackbox. Counter Braids134 are novel data structures to store estimated flow-based counters with

lowmemory usage, but does not work for loss detection because it does not provide accurate counts

and does not store flow information with counters.
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5.10 Summary

With diverse types of packet losses in datacenter networks, and their significant impact on appli-

cation performance and network operations, it is important to detect these losses in time and with

detailed information of individual lost packets. We presented LossRadar, a generic, light-weight

loss detection system that can identify individual lost packets, their locations, and the flows they be-

long to in near real time. LossRadar is easy to implement with programmable switch hardware,

and can capture all the individual lost packets with small memory and bandwidth overhead. We also

propose root cause inference algorithms based on the loss information from LossRadar.
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6
DETER: Precise Per-packet

Per-line-of-code Telemetry in TCP

6.1 Introduction

Modern datacenter applications increasingly rely on high throughput and low latency TCP perfor-

mance. Yet, these applications often experience TCP performance problems that are hard to diag-

178



nose. This is because the TCP stack is a complex system that involves many heuristics to deal with

network conditions and application behaviors, and it has many variations that optimize for different

traffic scenarios and application objectives.

As a result, there is simply no single best setting for all scenarios. Researchers invent more than

two TCP variations every year and there are already tens of congestion control algorithms to choose

in Linux. TCP in Linux 4.4 has 63 parameters to configure, some of which are less known to nor-

mal application developers, such as early retransmission flag and TCP low latency flag which pro-

vides options for optimizing specific traffic settings. Other parameters are hard to configure even

for TCP experts, as they have to run TCPmultiple times to fully understand the influences of dif-

ferent parameter settings and the interactions of various TCP features. For example, thin-dupACK

dynamically changes the threshold of the number of dupACK for fast retransmission based on the

size of the current transfer. TSO window divisor affects the Nagle test for TSO, which decides how

many packets to wait in order to form a larger packet.

Moreover, TCP is under continuous, error-prone development. There are 16 bugs identified in

Linux TCP49 in just July and August of 2018. As an example, one bug is related to DCTCP, where

the DCTCPCC’s ACK generation conflicts with the basic TCP framework’s ACK generation,

resulting in some packets never being acknowledged43.

Many misconfigurations and bugs are hard to diagnose because they are sporadic and intermit-

tent. However, they are still sufficient to degrade application performance, especially in datacenters

where large scale distributed systems often involve thousands of requests to fulfill a task148,104, be-

cause a single long latency may delay the entire task80,126.

Although diagnosing TCP performance problems is notoriously hard, the gold standard tools are

still the same as what have been used for tens of years: capturing packet traces39 and tracing TCP

executions34,19. While these tools are useful for diagnosing individual connections, using them

in large-scale datacenter environments is hard, because there are millions of flows from hundreds
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of thousands of hosts interfering with each other constantly. Collecting packets and tracing TCP

executions at all hosts and switches takes large quantities of storage, computing, and bandwidth

resources. TCP counters137,61 are useful lightweight tools in production, but they are not detailed

enough to diagnose the complex settings and interactions mentioned above (see more examples of

complex TCP performance problems in §6.5).

A common way to debug complex large-scale systems is deterministic replay165,115,89,151,60,97. De-

terministic replay is proven to be an effective tool for developers to recreate performance problems,

identify their root causes, and uncover many long-standing bugs in popular software. It would be

ideal if we can deterministically replay TCP (i.e., deterministically re-execute the TCP code).

However, deterministically replaying a large network of TCP connections is difficult because

TCP is a tightly coupled system with multiple interacting parties: applications, the network, other

TCP connections traversing through a common switch, and the kernel at hosts.

In particular, the closed-loop nature of TCP creates a butterfly effect, where even small timing

variations (e.g., clock drifts) between the runtime and the replay can drive the system to an entirely

different state. Better time synchronization cannot solve this problem: even a nanosecond of timing

variation leads to completely different TCP behaviors (§6.2.2). This is because small timing varia-

tions at hosts can cause different packet arriving orders at switches and therefore different packet

drops. The differences in packet drops cause different TCP behaviors (e.g., congestion control) in

turn, leading to different traffic rates from TCP senders and causing more differences in switch be-

haviors such as packet drops. Such butterfly effect propagates to many flows in the entire network

after many rounds.

To eliminate the butterfly effect, we propose DETER, a DEterministic TCP Replay system,

which breaks the closed loop interactions by replaying each TCP connection separately. We identify

the minimal set of signals that capture all the interactions between a TCP connection with the ap-

plication and the network, and record these signals at hosts in a lightweight manner. Specifically,
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Deter captures application socket calls and any impact on packets (e.g., if they are dropped or

marked ECN) in the runtime. In the replay, we no longer need switches because all their actions

to packets have been recorded and can be simply replayed. Since all the switch actions are deter-

ministically replayed, we break the butterfly effect. We also isolate the TCP connection with other

connections in the network because they only interact through switch actions.

The next question is how to deterministically replay an individual TCP connection. Although

we already capture the interactions with the application and the network, there are still non-determinisms

in the kernel at hosts. We design a customized solution for TCP which captures TCP-kernel inter-

actions such as the kernel calling TCP handler functions, TCP reading kernel variables, and locks in

thread scheduling. Note that we do not need to capture every packet, as the sender and receiver can

generate packets and ACK for each other. The size of our total recording is just 2.1~3.1% of the size

of fully compressed packet traces.

Since the recording is lightweight, Deter can run at all times for every connection on each host.

Upon observing a performance problem, we can use Deter to zoom into any TCP connection,

deterministically replay its exact same execution, capture packet traces, and examine TCP state dur-

ing the execution—all after the fact. We can also iteratively debug the same performance problem

instance multiple times to collect different levels of detail each time.

Once we have the packet traces for each connection using Deter, we can also replay network

queues in a physical network, emulator, or simulator as long as the setup has the same topology,

routing, buffer size, and switch queuing algorithms as the runtime. During the replay, we push all

the outgoing packets for all the senders into the network based on their timestamps. We also intro-

duce a heuristic that significantly improves the accuracy of replaying packet drops.

We demonstrate the benefits of Deter by showing how we diagnose TCP performance prob-

lems in a Spark application with 6.2K connections, tail latency problems in an empirical web search

workload with incasts, and example performance problems in a local testbed. With Deter, we can
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also diagnose a wide range of performance problems that require tracing the TCP execution, such

as long latency related to receive buffer shrinking, zero windows, late fast retransmission, frequent

retransmission timeout, and problems related to the switch shared buffer. The main limitation of

Deter is that it requires recording at both the sender and the receiver of a connection and therefore

cannot work when we do not have access to both ends.

6.2 Diagnosis Example and Challenges

We use a diagnosis example to demonstrate the benefits of deterministic replay. We then use the

example to show the key challenge to enable the deterministic replay—the butterfly effect. Even a

nanosecond of sending timing variation leads to completely different TCP behaviors.

6.2.1 A Diagnosis Example

We use an example to show how Deter can help diagnose TCP performance problems. We run a

network with two senders (A and B) and one receiver, which are connected to a single switch and

10Gbps links between them. Each sender sends two long flows of 20MB each. 30ms after the long

flow starts, sender A sends a short flow of 30KB to the same receiver. In one run, the short flow

takes 49ms to complete, which is two orders of magnitude higher than its expected completion time.

In comparison, the RTO is just 16ms.

Usually, people diagnose a problem by reproducing it. However, this problem is very hard to re-

produce (shown in §6.2.2). If we cannot reproduce a problem, we have to rely on the information

captured online, such as the TCP counters that datacenters usually continuously monitor137,61.

Unfortunately, TCP counters are not enough for diagnosing this problem. The counter for retrans-

mission timeout is two, but twice the RTO (2*16ms) is still much less than 49ms.

With Deter, we can deterministically replay the connections using the lightweight data recorded
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Figure 6.1: Receiver side Seq and Ack number of the short flow that experiences 49ms FCT.

in the runtime (Table 6.1), and capture packet traces during the replay. Here we show the packet

trace at the receiver side for the short flow (Figure 6.1). The trace shows that the second timeout is

32ms. This is because the two timeouts are consecutive and thus trigger exponential backoff. The

trace also shows the reason why the sender experiences the second timeout: the receiver receives the

first retransmitted packet at 16.94ms, but it does not send an ACK.Without the ACK, the sender

has to retransmit again at 48.93ms.

Why does the receiver not send an ACK for the first retransmitted packet? Deter allows us to

replay multiple times, in order to collect more data and iteratively diagnose the problem. We use

Ftrace19 to get the function call graph on the processing of the first retransmitted packet. It shows

that TCP enters the delayed ACK function, which means TCP decides to delay the ACK for the

first retransmitted packet. The delayed ACK timeout is 40ms (which is a hardcoded value in the

kernel and not configurable), which is longer than 2*RTO, so the second retransmission triggers

first.
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Figure 6.2: FCT of the short flow across 100 a�empts of replay with socket calls. The blue dashed-line is
49ms.

The root cause of this problem is that delayed ACK is very risky in the presence of RTO, because

after RTO the sender can only send one packet. Ideally, the receiver needs a way to identify retrans-

missions (e.g., the sender marks the retransmitted packets), so it does not delay the ACK for them.

As a workaround today, reducing the delayed ACK timeout can mitigate the problem.

6.2.2 Butterfly Effect

While deterministic TCP replay is a powerful tool for diagnosing TCP performance problems, it

is not easy to ensure determinism. For the above example, if we simply replay with the same socket

calls at the same times as the runtime, we cannot reproduce the problem.∗ Figure 6.2 shows that

when we replay 100 times, the short flow always has way less than 49ms flow completion times

(FCT). In the production where there are more flows and more dynamic traffic than our testbed,

it is more difficult to reproduce the same problem.

The key challenge for the deterministic replay is the butterfly effect. Packet sending times at hosts

often have microsecond-level variation between the replay and the runtime. This is caused by the

inherent host non-determinism, such as the clock drift, context switching, kernel scheduling, and

cache state126.

∗We synchronize the clocks among the senders and receivers to 100s of nanoseconds precision by PTP
(Precision Time Protocol20).
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The small variation gets amplified by the butterfly effect—the closed loop interactions between

switches and TCP. A small packet sending time variation may change the order of packets from dif-

ferent hosts at a switch, which causes switch action variations—the switch may drop or mark ECN

on a different set of packets. This starts the butterfly effect in the closed loop between switches and

TCP: Switch action variations cause TCP behavior variations (e.g., TCP changing congestion win-

dow size differently). TCP behavior variations change its flow sending rates, which affect the queue

lengths at all the switches the flow traverses ever since and lead to more switch action variations.

Such a chain reaction between switches and TCP affects more and more flows all over the network

in multiple rounds.

One may expect that reducing the sending time variation (e.g., better clock synchronization,

more deterministic packet processing time) can improve the replay accuracy. However, our ex-

periment shows that even a nanosecond of variation can lead to completely different packet-level

behaviors.

We run an ns-3 simulation50 to control the sending time variation. We use the same topology

and traffic as in §6.2.1. For the runtime, we set the host packet processing delay to 10μs, the same as

what we measure in the testbed. The short flow incurs a long flow completion time because of the

correlated RTO and delayed ACK.We then replay the experiment with the same socket calls and

timings. To simulate different levels of sending time variation, we simulate a normal distribution

of host packet processing delay with the same mean delay of 10μs but with a standard deviation

ranging from 0 to 1000ns. For each level, we replay 100 times.

Figure 6.3 shows the percentage of replays that reproduce the correlated RTO and ACK delay

on the short flow. Once the sending time variation exceeds zero, even just 1ns, the probability of

reproducing the same problem suddenly drops.

This is because with a non-zero sending time variation, there is always a chance that a switch

takes different actions on a packet between the runtime and the replay. Smaller timing variation
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Figure 6.3: The rate of reproducing the correlated RTO and ACK delay.

 0

 50

 100

 150

 200

 0  10  20  30  40  50  60

Q
ue
ue

 D
iff

 (
K
B)

Time (ms)

1ns
10ns

100ns
1000ns

Figure 6.4: The ঞme series of queue length difference.

can only delay the appearance of different actions, but cannot prevent it. Once the switch takes a

different action, the butterfly effect starts, causing a chain reaction of changing sending rates and

queue lengths. The chain reaction persists regardless of the level of the sending time variation.

Figure 6.4 illustrates this. We show the time series of queue length difference between runtime

and replay experienced by each packet. For each level of sending time variation, we show a typical

one of the 100 replays. For 1ns variations, although the queue length difference starts later than with

higher variations, once the difference starts at 12ms, it never goes down to 0.

This result indicates that we cannot simply rely on reducing the sending time variation. This
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motivates our Deter design, which decouples the TCP and the network so that switch action varia-

tions cannot affect TCP.

6.3 Deter Design

In this section, we discuss Deter design with four key ideas: first, we break the butterfly effect by

replaying individual TCP connections separately and record TCP’s interactions with the appli-

cation and the network. Second, to deterministically replay each TCP connection, we record all

the non-determinisms that happen in the interactions between TCP and the kernel. Third, we in-

troduce a rate-based sampling solution to reduce the overhead of recoding packet sending times.

Finally, with the packet traces of all the connections, we show how to replay switch queuing behav-

iors.

6.3.1 Breaking the Butterfly Effect

We break the closed loop between TCP and the switches by replaying individual connections sepa-

rately. We identify the minimal set of signals that capture all the interactions of a TCP connection

with the application and the network.

TCP interacts with applications through socket calls. Deter captures all socket calls and its

input arguments such as the number of read/recv bytes and socket flags.

TCP interacts with the network through packets. TCP sends packets into the network and re-

ceives packets from the network. We do not need to record most incoming packets because we re-

play the sender and the receiver of a connection together and they can automatically generate pack-

ets for each other. We only need to record how the switches inside the network change the packet

stream such as dropping packets or marking them with ECN bits. At the receiver, we detect packet

drops by checking if the IP_ID fields are continuous and ECN by checking the ECN bits (see §6.4
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for details) and record them there.

Note that for a TCP connection, it does not matter which switch drops or marks the packets.

Only the final changes to the packets matter. So in the replay, we no longer need switches because

their actions to packets have been recorded and we can just replay them. Since the switch actions are

deterministically replayed, we break the butterfly effect.

A TCP connection interacts with other connections when they share switch resources in the

network and cause different switch actions†. Since we recorded switch actions, we also isolate the

interactions among TCP connections.

In summary, in the runtime, we record socket calls and switch changes to packets at all the hosts.

Users can specify which connections to replay. To replay a connection, we set up a simple two-

host testbed that runs as a sender and a receiver for every single connection without involving any

switches. We run a socket call generator to generate socket calls at the right time and run a packet

corrector to inject actions on packets before they arrive at the TCP sender and receiver. We can eas-

ily parallelize the replay of multiple connections because we replay each connection independently.

6.3.2 Handling Non-determinisms in the Kernel

The next question is how to deterministically replay a single TCP connection. It is complex to re-

play a general system151,60, which requires record and replay lots of non-determinisms. We use the

knowledge of TCP to design a customized replay for TCP, which is lightweight. Specifically, besides

the interaction with the application and the network, TCP also has three non-determinisms from

interacting with the kernel: the kernel may call TCP handler functions, the TCPmay read kernel

variables, and there is thread scheduling.

(1) TCP handler function calls from kernel: The kernel may call some TCP handler functions.

†We discussion TCP connections on the same host in the next subsection.
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For example, the OS timer may call TCP timeout handler. The kernel may also call resume transmis-

sion handler, which sends more packets in the send buffer. We need to record them.

(2) Reading kernel variables: TCP reads a few variables that are updated by other kernel programs

(or hardware), such as memory pressure indicator, the jiffies (a low-resolution clock), the mstamp (a

microsecond-resolution clock), and the send queue byte count. We should record the return value

of each read.

(3) Thread scheduling: TCP works in a multi-threaded environment. Different threads, such

as applications, NIC interrupts, and OS timers, access the shared socket variables by calling TCP

handler functions. For example, an application thread calls a socket call handler to copy data into

the socket send buffer; a NIC interrupt may call the TCP receive packet handler to frees up some

space of the send buffer; OS timer may call the timeout handler to send a pending packet in the send

buffer. It is important to ensure the order of different threads accessing the same variable. Fortu-

nately, TCP uses a single socket lock to ensure that only one thread can access all the shared vari-

ables at a time. Thus, we just record the order of lock acquisition of different threads by giving a

sequence number for each lock acquisition.

In the replay, we run the same TCP stack with the same TCP configuration as the runtime. In

addition to the socket call generator and the packet corrector, we also generate handler calls from the

kernel based on the recorded logs. We feed in the recorded kernel variables when TCP reads them.

We also enforce the order of lock acquisition of different threads (see §6.4 for more details).

6.3.3 Sampling Packet Sending Times

So far we have ensured the ordering of TCP behaviors (e.g., the sequence of packets, state updates,

loss detections, timeouts). One remaining question is how to replay packet sending times accurately.

Recording the sending times for all the packets takes high storage overhead. To reduce the overhead,
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we choose to sample packets, record the sending times for sampled packets, and infer the times for

the other packets. The question is how to select the samples in real-time while bounding the infer-

ence error within a given threshold th.

Strawman solution: gap-based sampling. TCP usually sends packets in bursts. So intuitively for

each burst, we can keep the sending time of the first packet and the burst length. Assuming all the

packets in the same burst follow the same sending rate, we can then infer the sending times of all the

unsampled packets. We can identify packets in the same bursts if their interarrival time is below a

threshold.

We perform a simple experiment to show that this approach has an unbounded error. We send

two flows from two senders through a shared 10Gbps link. The second flow starts 500μs after the

first flow. Figure 6.5 shows the packet sending time series of the first flow. All the packets from the

96-th to the 499-th are in the same burst (i.e., no gap of packet sending time), but the rate changes.

As a result, the inferred sending time of the 323-th packet is 38μs later than the actual time.

Our solution: Rate-based sampling. Gap-based sampling fails to sample packets when the packet

rate changes. Therefore, instead of recording the burst length, we propose to record the packet rate.

When the inferred sending time based on the recorded packet rate is wrong (i.e., the difference with
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the actual time is above the threshold th), we sample a new packet. We set th to 5μs by default.

Specifically, in the runtime, we follow Algorithm 12. s is the previous sampled packet and p is

the new packet. Given the sending time of s (s.time) and a packet rate r, we can infer the send-

ing time of p (p.time). In reverse, to ensure that our inferred sending time of p falls in the range of

[p.time− th, p.time+ th], we must ensure our recorded packet rate r falls in the range of p_range =

[
p.index−s.index
p.time+th−s.time ,

p.index−s.index
p.time−th−s.time ] (Line 2). Thus, we compare the recorded rate range rec_range and

p_range. If they overlap, it means we can find a rate, in the intersection of rec_range and p_range,

that can be used to infer a bounded sending time for both p and all the previous packets between s

and p. Thus, we do not need to sample p (Line 4). Otherwise, if the two ranges do not overlap, we

sample p, record a rate in rec_range, and reset rec_range (Line 6-7).

Deter can generate the full packet trace for each connection, by combining the recorded (in-

ferred) sending times with the packets generated by the replay of TCP execution.

Algorithm 12 Deter Sampling sending time. p.index is its index within its 5-tuple flow, and
p.time is its sending time.

1: procedure sample(p: a new packet)
2: p_range = [

p.index−s.index
p.time+th−s.time ,

p.index−s.index
p.time−th−s.time ]

3: if p_range ∩ rec_range ̸= ∅ then
4: rec_range = p_range ∩ rec_range
5: else
6: record(s.index, s.time, rec_range.mid)
7: s = p; rec_range = [−∞,∞]

6.3.4 Replaying Switch Queues

Because we can get all the packets, their sizes, and sending times for each connection in the network

(§6.3.2 and §6.3.3), we can use them to replay switch queues in simulators (e.g., ns-350) by pushing

all the packets at the right time into the network. Replaying switch queues can help us understand
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the interaction between different connections at the switches (e.g., which flows contend for the

queues).

The simulator needs the same topology and switch data plane (e.g., forwarding tables, buffer

sharing policies, switching delay, and link propagation delay) as the runtime. Today, many vendors

build high-fidelity simulators for their own devices25,41,31. One can also choose to replay switch

queues in a physical network if available. Replaying switch queues also requires that host clocks are

tightly synchronized during the runtime, so that the relative packet sending time error across hosts

are small. Precision Time Protocol20 is widely available and can synchronize clocks to submicrosec-

ond level. With Sundial127, we can tightly bound the clock precision at∼100ns.

Replaying the exact queueing behavior is both impractical and unnecessary. It requires recording

the exact order of enqueue and dequeue, which is too heavy for the runtime. On the other hand, it

is often good enough to show the contending flows and their occupancies with high accuracy.

Thus, we opt for a simple design that can achieve high accuracy. We simply push all the packets

into the network at the right time. It can achieve high accuracy because the switch queue occupancy

is a continuous function with respect to packet sending times. Since the difference in packet sending

times between the runtime and the replay is bounded, the difference of switch queue occupancy is

also bounded. Specifically, suppose a packet’s arrival time at a port differs by k packets transmission

time, and the fan-in of that port is f, the queue difference is at most (f − 1)k. k is small because our

sampling bounds the sending time error to 5μs, and there are limited hops to amplify it. f is also

small because the destinations of flows traversing a switch are random‡. Even if f is large, such as

during incast, the queue occupancy is also large, so the difference is a small fraction of the queue.

However, one exception is packet drops. Because dropping packets or not is a binary decision

(not a continuous function), even if a microsecond level difference can cause different drops. Specif-

‡In theory, the fan-in is within 4 for 99.7% of the time for a 64-port switch with random traffic.
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Table 6.1: Runঞme recorded data.

Type Data recorded
Interaction w/ network losses, ECN, reordering
Interaction w/ applications socket calls
Handler call from kernel Timeout handler, resume transmission handler, packet receive handler

Kernel variables Infrequently updated variables, e.g., jiffies, memory pressure indicator
Influence of frequently updated variables e.g., RACK loss detection

Order of lock acquisitions sequence number of lock acquisitions for diff. threads
Timestamp samples Sampled packet sending time (time, index, rate)

ically, a runtime dropped packet may get through, which we call a false-accept. It also occupies some

free space in the queue, leaving less space for later packets that should be in the queue, so one of the

later packets may get mistakenly dropped, which we call a false-drop.

We propose to reduce the probability of false-accepts and false-drops by letting the hosts tag

should-be-dropped packets. In this way, we ensure that the switches only drop packets with tags (for

eliminating false-accept) and always deliver packets without tags (for eliminating false-drop).

The key challenge is how to know which switch to drop the tagged packets. Since the switch

queue occupancy is a continuous function, it has bounded differences with respect to the sending

time difference. We propose to decide whether to drop packets at a switch based on the switch’s

queue occupancy upon packet arrivals. That is, when a should-be-dropped packet arrives at a switch,

and the queue occupancy is above a threshold (e.g., > queue max length - 5 MTU), the switch drops

the packet.

When a packet only experiences one congested switch on its path, which is the most common

case, our solution works well. In the rare case when there are multiple congestion spots on the path,

Deter may drop the packet at a wrong location. Our evaluation shows that this heuristic reduces

the error of dropping packets§ from 58.3% to 2.87%.

§Percentage of false-accept, false-drop, and drop at wrong location in all drops.
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6.4 Implementation

In this section, we discuss the implementation details of Deter. We just need 139 extra lines of

code in the Linux kernel. Then we accomplish the record and replay with two kernel modules and

two userspace programs (3000 lines of C and C++ code in total).

Runtime recording. For each connection, we first record its configurations, and then record the

data listed in Table 6.1 during its runtime. We note that the configurations of connections on the

same server are mostly the same, so we only record the parameters that differ from the default val-

ues. Our current prototype starts the recording after the connection is successfully built¶. We now

discuss the runtime recording.

Interaction with the network: This includes packet drops, ECN, and packet reordering. In our de-

sign, we use the IP_ID field to detect packet drops: Linux sends packets of each connection with

consecutive IP_ID values, so the receiver can check if there are gaps in the series of incoming packets

to detect drops (Similarly, the sender can detect drops in the incoming ACKs)∥. On other platforms

that do not have the consecutive IP_ID feature, we can use LossRadar130 to detect drops, which

only takes O(#loss) space. The host also checks the ECN of the IP header of each incoming packet,

and record 1 bit (CE) for it. Sometimes there may be packet reordering, which we can detect also

using the IP_ID field.

Recording the interactions with the network is lightweight. In datacenters, the packet drop rate

is just 10−5 to 10−4 162,96. For ECNwe just need 1 bit per packet. Reordering is rare, so it does not

cost much. We instrument the TCP receive packet handler to record them.

Socket calls from the application: We hook the TCP socket call handler functions to record the

¶Record and replay for connection setup is not very different. The only difference is detecting the drop of
the first packet (SYN and SYN-ACK). This can be solved by recording the IP_ID of all SYN packets at both
sender and receiver, which just adds 8 bytes for each connection.

∥This is different from TCP’s drop detection: TCP sender does not distinguish drop of a data packet or
its ACK.We must distinguish them because both the sender and the receiver must replay accurately.
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#bytes and flag, so that we do not need to change the application.

We can reduce the storage overhead of socket calls a lot. We find that there are often identical

socket calls. For example, distributed files systems break large files into fixed-size chunks, so most of

the send and receive sizes are the same. Thus, we store all the common patterns of socket calls (the

common #bytes and flag pairs) for different applications, and only record the pattern numbers in the

runtime. Deter associates connections to applications via their TCP port numbers.

Other TCP handler calls from the kernel: We hook the timeout handlers and the resume transmis-

sion handler, and record them when they get called.

Kernel variables read by TCP: We record the memory pressure indicator and jiffies with low over-

head because their values change infrequently. The memory pressure indicator is very rarely set, and

the jiffies increments by 1 every 4ms. So we just maintain the values of the last read and only record

the reads that return a new value.

The mstamp and the send queue byte count are updated frequently. We reduce the overhead

by recording their influences instead of their values. Specifically, the variables influence the TCP

executions by serving as the metrics of if-conditions in TCP. For example, TCP uses the mstamp to

detect losses (RACK38). We just need to record the loss detection result, rather than the actual value

of the clock. We identify and record all the if-conditions they affect (1 bit for each), which relates

to loss detection, cwnd reset, TCP segmentation offload, and TCP small queue. Moreover, most of

the if-conditions have a dominant result (e.g., loss detection mostly return false), so we reduce the

overhead further by only recording when they have the uncommon result.

We use a special reader function to record these values. For example, in the TCP code, we re-

place a=jiffies with a=reader(jiffies) to record the value of jiffies and replace if (mstamp>b) with if

(reader(mstamp>b)) to record the influence of mstamp. The reader function simply records the

value passed to it and returns this value.

Lock acquisition: We instrument TCP’s lock acquisition function to record which thread calls this
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function, so we know the order of lock acquisition by different threads. We also optimize the over-

head. Specifically, one thread may acquire the lock many times consecutively. For example, NIC

interrupt acquires one lock for each incoming packet, so there are often tens of lock acquisition by

NIC interrupt in a row. Therefore, we record the number of consecutive lock acquisitions, instead

of recording them individually.

Sampled sending times: To get the most accurate timestamps, we sample and record the sending

times in the NIC driver, just before TCP pushes packets into the NIC ring buffer.

Replay. We now discuss the replay.

Replay TCP stacks. Figure 6.6 shows the replay setup. We implement the packet corrector with Net-

Filter27. It injects drops and CE bits to the incoming packets∗∗. We also enforce the reordering here.

To replay the socket calls, we implement a socket call generator in the user space to inject socket

calls from the applications according to the log.

We also implement a TCP handler caller, which is a kernel thread that calls TCP handler func-

tions according to the log. The handler functions include the packet receive handler, the timeout

handler, and the resume transmission handler. When calling the packet receive handler, it gets a

packet from the packet corrector as an argument to the handler.

To enforce the order of different threads acquiring the lock, we implement a sequencer. It knows

the order of different threads acquiring the lock based on the log. We instrument the lock acquisi-

tion function to check with the sequencer before it actually acquires the lock. If the current thread

is not the next to acquire the lock, it waits for other threads until itself is the next to acquire the lock.

We reuse the reader function that we introduced before to feed the recorded kernel variables or

their influences. During the replay, the reader function reads the log and return the corresponding

∗∗We require no packet drops before packets entering the packet corrector, so we must make sure no pack-
ets get unexpectedly dropped in the queues on the hosts (e.g., NIC ring buffer, softirq queue, qdisc) during
the replay. We can set the sizes of these queues large enough to avoid unexpected drops.
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Figure 6.6: Replay implementaঞon in Deter

value.

Replay sending and receiving timestamps. We only record packet sending times for replay. We can

infer receiving times from sending times: for the received packet which triggers a new packet to

send, we can estimate its receiving time as the sending time of the new packet minus the average

packet processing time, which is measured separately. For the received packet that does not trigger a

new packet, its gap with the previous received packet is close to their sending time gap, because they

experience similar network conditions. Note that only the sending times affect the switch queue

replay, but not the receiving times.

Switch queue replay. We run Precision Time Protocol20 in our testbed. We implement the switch

queue replay in both testbed and simulation. For the testbed, we implement a DPDK packet gen-

erator that reads the packet trace, tags packets, and sends packets to the NIC at the right time. We

use a NetFPGA-based switch to implement the drop accuracy improvement (§6.3.4). It is also

implementable in P413. We also implement the replay in a packet-level simulation in ns-350, with

the same topology, link delay and bandwidth, switch queueing algorithm, and routing state as the
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testbed.

6.5 Evaluation

In this section, we demonstrate the benefits of deterministic replay in Deter by showing how we

diagnose TCP performance problems in a Spark application with 6.2K connections, the tail latency

problem in an empirical web search workload with incasts, and example problems in a local testbed.

We also measure the CPU and storage overhead of Deter recording and the accuracy of Deter

replay. Our evaluation shows that Deter only uses 2.1~3.1% compared to fully compressed packet

traces and requires 0.094%~1.49% of CPU overhead. Deter also fully replays the sequences of

packets at hosts and replays switch queues with lower than 1MTU differences on average.

6.5.1 Diagnosis in Spark

Evaluation setting. We run a TeraSort job in Spark45 that sorts 200GB data on 20 servers con-

nected with 10Gbps network in Amazon EC240. We use 4 executors (i.e., 4 cores) and 20GBmem-

ory on each server. The NICMTU is 1500B. We enable TCP segmentation offload, and disable

generic receive offload††. We run Deter on all servers to record data for all connections during the

runtime and also run Tcpdump39 to collect the packet traces as the groundtruth.

Diagnosis. We can use Deter to identify and diagnose tail latency problem in Spark. We define

each flow as all the packets belonging to the same Spark message. Spark usually sends one large mes-

sage with multiple socket calls. So if a socket call starts after all the previous packets are acknowl-

edged, we treat the socket call as a new message. Otherwise, we treat it as part of the previous mes-

sage.

††We have not implemented replay for it, but it is not hard (§6.7).
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Table 6.2: Reasons for 99.9-th percenঞle latency for flows of different sizes in Spark.

Flow size (MB) <0.1 [0.1, 1] [1, 10] >10
RTO 8 3 4 0
FR 74 0 0 0

Delayed ACK 0 0 18 0
Rwnd=0 0 0 1 1
Slow start 0 0 1 0

We find that the tail latency of flows fromHDFS are mostly caused by receiver limit, because

their receive windows frequently reach zero.

The 99.9-th percentile latencies for flows between Spark workers experience a variety of prob-

lems as summarized in Table 6.2. For flows shorter than 1MB, their tail latency are mostly caused by

packet drops (RTO or fast retransmission (FR)). For flows longer than 10MB, their tail latency are

mostly caused by receive window frequently reaching zero (Rwnd=0).

The flows in the range [100KB,1MB] are of particular interests, because most of their tail laten-

cies (18 out of 24) are caused by multiple delayed ACKs. We show the sender-side packet trace for

one of them in Figure 6.7; others have similar patterns. The sender frequently gets blocked after

sending a burst of packets, until around 40ms later when the ACK comes back. Such burst-40ms-

ACK pattern repeats multiple times and causes excessive delay. This is out of our expectation, be-

cause the receiver should acknowledge every two data packets.

With Deter, we can easily replay the problem, and use TCP Probe to print the variables that

decide whether to delay the ACK.We check many of these connections, and find that TCP explic-

itly delays the ACK because the free space in the receive buffer is shrinking. This suggests that the

root cause is the application not reading the data in the receive buffer in time. Our guess is that the

application is busy with processing data, so the CPU is the bottleneck in this case.

Deter can help us effectively diagnose the problems caused by the network (e.g., RTO, fast re-

transmission). In addition, it can also help us identify problems caused by applications. This is help-
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Figure 6.7: A flow with delayed ACKs.

ful because in datacenters it is often unclear where the performance bottleneck is, and blaming the

network is often the first reaction61. Unlike previous systems that infer the bottleneck137,61, Deter

can help us quantify the duration of different bottlenecks without instrumenting the applications.

Overhead. Deter records a total of 200.6MB data in the runtime. For comparison, Tcpdump

uses 22.4GB to record only the IP and TCP headers and timestamps. Even if we apply the state-of-

the-art resource-efficient solution for packet compression98 to Tcpdump, the storage will reduce to

6.5GB‡‡, compared to which Deter storage is still only 3.1%.

If we keep using Deter to monitor a datacenter that continuously runs such Spark jobs, Deter

storage overhead translates to 2.8GB/host/day. We can delete the data every day if we do not see

performance problems.

We also use Linux perf29 to evaluate the CPU overhead of Deter recording. Deter uses 0.094%

of total CPU time.

‡‡Since we don’t have NetSight’s code, we calculated based NetSight’s reported value. The same calcula-
tion is used in other experiments.
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Table 6.3: Reasons for 99.9-th percenঞle latency for flows of different sizes in datacenter workload.

Flow size (MB) <0.1 [0.1,1] [1,10] >10
Congestion 149 35 25 2
Late FR 29 27 0 0

ACK drops 0 2 0 0
Tail drops 4 1 0 0
RTO 2 1 2 0

6.5.2 Diagnosis in Datacenter Workload

Evaluation setting. We now diagnose TCP tail latency problems under empirical workloads mod-

eled after traffic patterns that have been observed in production datacenters. We run a client-server

RPC call software26 in the same 20-node Amazon EC2 testbed. The clients set up a persistent TCP

connection to each server, and request flows according to Poisson process from a random server. We

set the flow sizes following the distribution observed in a production datacenter running web search

applications57. We also add incast traffic pattern, by having the client simultaneously request 10

random servers, so the 10 servers respond synchronously causing incast. We set the average request

rate to have an 80% network load, and 20% of the load is incast traffic. We generate a total of 280K

requests over 380 persistent connections. All 20 nodes run both client and server.

Diagnosing tail latency. In Table 6.3, we classifies the root causes into five categories: congestion

(i.e., low throughput), the fast retransmission happens very late (late FR), ACK drops (so the sender

gets stuck), tail drops (so the packets at the end of a flow get dropped), and RTO.

We analyze the short flows (100KB-1MB) with latency above 99.9-th percentile as an example. At

the 99.9-th percentile, flows experience 173.8 slow down of completion time compared to the case

of running the flow alone. We make the following interesting observations:

RTO is not the main root cause of tail latency. Awidely discussed reason for tail latency is RTO71,172.

But actually RTO is rare in this experiment. The reason is that when there are multiple requests in

the same connection, later requests can help recover the packet losses of previous requests (by trig-
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gering fast retransmission), so TCP loss recovery is effective in this scenario.

Fast retransmission (FR) is delayed for 10s of milliseconds. When these flows experience loss, the

senders start FR after 10s of duplicate ACKs (dupACKs). This is unexpected because the normal

threshold for FR is 3 dupACKs. And this is bad because short flows usually do not have so many

dupACKs. In fact, most (22 out of 27) of these flows do not have enough dupACKs on their own;

their FR starts 10s of milliseconds later when another request in the same connection starts and

triggers more dupACKs.

With Deter, we can replay repeatedly and gain more insight into the problem. For one of the

connections that experiences the late FR problem, we use TCP Probe34 to print out the threshold

for dupACKs (tp->reordering) on every ACK’s arrival. We find that this threshold starts at 3, but

later increases (and never decreases), so when the flow that experiences late FR arrive, the threshold

is 45. We search in the TCP code, and find the threshold only increases when TCP detects reorder-

ing.

A quick fix is to set the upper bound of this threshold (net.ipv4.tcp_max_reordering) lower, but

it risks spurious retransmission in the presence of reordering. A potential optimization to TCPmay

be regularly reducing the threshold.

Overhead. Tcpdump records 16.8GB, or 4.9GB if with compression. Deter records a total of

103.8MB, which is 2.1% of compressed size.

The CPU overhead is 1.49%. The overhead is higher than in Spark, because the client-server soft-

ware only uses CPU to send and receive data, without any data processing. In fact, it spends 99.78%

of its CPU time in the networking stack (including Deter). So 1.49% is very close to the lower

bound of Deter CPU overhead.
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6.5.3 Diagnosing RTO in a Testbed

RTO usually has a large impact on the latency. However, there are many different causes of RTO,

and often involves different parameters. In §6.2.1 we have shown one case. Here we show two other

causes for RTO that we see in our testbed. In all cases, TCP counters can only be the first step—

knowing that timeouts and packet losses happen. But it is very hard to realize the relationship be-

tween the timeout and other events. With Deter, we can replay the connection to get the packet

traces and trace the TCP execution to dig out the root cause.

Evaluation setting. We use 3 hosts connected through a single switch via 10Gbps links. We pick

two of the hosts as senders and the rest one as the receiver. Each of the senders sends one long flow

(10MB) to the receiver. One of the senders also sends a short flow (10KB) to the receiver.

Root cause 1: not enough dupACKs. In this case, the short flow experiences RTO.We can use Deter

to replay the connections and capture the packet trace. The trace shows that the short flow sends 7

packets in the first round, and the 5-th packet gets dropped. Thus, although the 6-th and the 7-th

packets trigger dupACKs, the number of dupACKs is not enough to trigger fast retransmission.

Root cause 2: setting large TCP receive buffer size. The receive buffer size is a frequently tuned pa-

rameter for networks with different bandwidth-delay products. For example, an inter-datacenter

connection with 100ms RTT and 1Gbps bandwidth need 12.5MB buffer size. Unfortunately, a

large receive buffer can cause RTO issues. Here we show the diagnosis in an example with 10MB

receive buffer. The SACK is not turned on.

In the packet trace, we find after a packet loss, there are more than 3 dupACKs, but the sender

does not fast retransmit the lost packet. This is unexpected because just 3 dupACKs should trigger

fast retransmission. We first suspect that this may be the late FR case that we show in §6.5.2, but it is

not the case.

To dig out the root cause, we use Ftrace to get the function call graph of handling each ACK.
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Surprisingly, We find that TCP does not go to the dupACK branch. This means TCP even does not

treat them as dupACKs. So we use TCP Probe to print the variables that are used to classify ACKs

as duplicates. The flag variable reveals the reason: TCP does not treat the ACKs as duplicate because

the flag’s WIN_UPDATE bit is set30. This means each of these ACKs carries a different window

size. We confirm this in the packet trace: each ACK carries a larger window size.

The direct cause for this problem is that the receive buffer size is very large. The receive window

starts with a small size, and increases twoMSS per received data packet until reaching configured

receive buffer size. Thus, the window size keeps growing throughout the lifetime of this connection.

However, this also suggests a potential optimization to TCP that it should have a smarter classifica-

tion for dupACKs.

6.5.4 Evaluating Switch Queue Replay

Nowwe evaluate the accuracy of replaying switch queues in our testbed and simulation. We first

run traffic in our testbed, and replay the queue to evaluate the accuracy. Then to understand how

the switch queue replay works under more switches and more congestions, we run empirical traffic

in a large scale simulation, and replay the queues.

6.5.4.1 Evaluation with testbed

Evaluation setting: The testbed comprises 3 hosts. To get the groundtruth of the queue content,

we use a NetFPGA switch and program it to send out the queue content through the unused port.

The switch has a total of 393KB buffer shared across 3 ports§§. TheMTU is 1500B. The host clocks

are synchronized with 100s of nanoseconds precision by Precision Time Protocol20.

Because congestion is the most challenging scenario to replay, we set traffic to have severe con-

§§We use the commonly used dynamic threshold75 with α = 4.
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gestion. We use 2 hosts as senders and the rest one as a receiver. Each of the two senders generates

2 long flows (10MB each) to the receiver simultaneously. Each sender also generates 4 short flows

(10KB each) to the receiver, one every 5ms. So there are a total of 4 long flows and 8 short flows.

During the runtime, we use Deter to collect data, and also collect the content of the congested

queue. Then we first replay each connection to get the packet trace, and replay the queue. We replay

the queue in both the original testbed, and in a simulation. The simulation has the same topology,

and simulates the same link throughput, latency, and buffer setting as the NetFPGA switch.

Accuracy: The metric we use is queue content difference: the difference between the runtime queue

qrun and the replay queue qrep that each packet sees. Formally, we define

qdiff =
∑

f∈qrun∪qrep f.sizerun − f.sizerep

where f.sizerun means the bytes of flow f in the queue during the runtime and f.sizerep is for the re-

play.

On average the queue content difference is 0.57MTU in the testbed, and 1.0 MTU in the simu-

lation. On the 99-th percentile, the difference is 4.83MTU in the testbed, and 3.85MTU in the

simulation, both of which are very low compared to the buffer size. Replay in the testbed has a

slightly higher tail difference because timing variations (e.g., thread scheduling) exist in the testbed,

but not in the simulation.

6.5.4.2 Evaluation in large-scale simulation

Our testbed evaluation shows that the replay is effective for one switch. In production, there are

more hosts, multiple layers of switches, and more congestions across the switches. So we use simula-

tion to evaluate a larger-scale network.

Evaluation setting: We run the simulation in ns-350, with 320 switches and 1024 hosts con-

nected through a K=16 Fat-Tree with 10Gbps links. Each switch has 2MB buffer, shared by all its
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16 ports¶¶. To simulate the clock synchronization error, we add a delta to each host’s clock, with a

uniform distribution between 0 and 5 us∥∥.

The traffic includes both empirical background traffic that follows the flow size distribution of a

web search workload57, and incast traffic. The source and the destination of each background flow

are chosen uniformly random. The flow arrival rate follows a Poisson process, and we vary the flow

arrival rate to achieve different levels of traffic load, from 10% to 80%. We also generate the incast

traffic by having the client simultaneously requests 40 servers, each of which sends back 250KB

response (10MB total response size). We generate 2400 incast per-second.

To understand how the sampling affects the accuracy, we sample the sending times with different

threshold of error: 2μs, 5μs, and 10μs. We then replay the queues.

Accuracy: Figure 6.8 shows the queue content difference of all queues in the network. The dif-

ference increases mildly with higher load, both on average and at the 99-th percentile. For example,

with 5μs threshold of error, at 30% load, the maximum load of most datacenters in practice156,36,

the differences are 0.78MTU on average and 5.7 MTU at 99 percentile. At 80% load, an extremely

high load, the differences are 1.7 MTU on average and 9.7 MTU at the tail. It also shows that a 5μs

threshold achieves relatively good accuracy: it only increases less than 0.3 MTU (on average) and less

than 1.8 MTU (at tail) difference compared to 2μs.

We also compare the packet drop error with and without the drop accuracy improvement. The

drop error is #false_accept+#false_drop+#drop_wrong_location
#packets_dropped_in_either_runtime_or_replay . Our evaluation shows that the drop error

reduces significantly. For example, for 5μs sampling threshold at 30% load, the error reduces from

58.3% to 2.87%.

The drop error is low under various loads, from 2.52% at the 10% load, to 3.81% at the 80% load.

¶¶For the buffer sharing policy, we use the commonly used dynamic threshold75 with α = 4.
∥∥PTP in LAN can achieve submicrosecond accuracy, and under 3.2μs in WANmost of the time 32. More

advanced clock synchronizations124,91 guarantee submicrosecond accuracy. We choose 5μs to be conservative.
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Figure 6.8: The queue content differences of replay in simulaঞon.

There is no false-drop, as the simulation can avoid this (§6.3.4). Most errors are false-accepts. Only

less than 0.37% of the drops show up at wrong locations, which means we can trust the drops in

the replay with high confidence, because only 0.37% of them give wrong locations. Since 80% load

is extremely high and we also added incast traffic, we believe most datacenters would not stress the

network at this level, so we believe the drop error rate is low in general.

6.5.4.3 Diagnosing RTO using queue information

Sometimes RTO can be caused by the queuing mechanisms of switches. We run the traffic in a 4

host (A, B, C, D) testbed. B and C respectively send 5 long flows (500MB each) to A. In the middle

of the long flow transmission, A, C and D respectively send 5 short flows (100KB each) to B simul-

taneously. Two of the long flows from C to A experience RTO. Using Deter to replay them, we

find that they both drop a whole window of packets, at the same time. But this time we cannot find

any problem in the TCP stack. So we use the packet traces for all the connections to replay switch

queues in an ns-3 simulator.

During the replay, we collect all the enqueue and drop events at the switch. The packets are

dropped at queue 0 of the switch. Figure 6.9 shows the length and the cumulative drop count of
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Figure 6.9: The lengths of two queues that share the buffer.

queue 0. At around 10ms, there is a sudden increase in drops. Unexpectedly, the queue length is de-

creasing at the same time. We suspect that the switch buffer sharing75 causes this problem, because

the threshold of a queue decreases when the total buffer utilization of the switch grows.

So we replay again and monitor other queues of the switch. We find that a burst of packets builds

up queue 1 at the time of queue 0 drops packets. This confirms our hypothesis.

This problem could also happen in datacenters because most datacenter switches use shared

memory across different queues. The threshold of any queue is proportional to the total free buffer

size. If the switch buffer utilization suddenly increases, the threshold shrinks, which causes tempo-

rary blackhole at the almost-full queues (e.g., queue 0 in Figure 6.9). The sudden increase in switch

buffer utilization can happen because of incast, which is common in datacenters.

6.6 Related Work

Replay systems. There are many replay systems for kernel, multicore applications and distributed

systems165,115,89,151,60,97,37. They record the input and interaction of the target of replay (a subset

of components of the entire system) with the rest of the system to isolate the target, and then make
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sure the target itself replays accurately. There are two ways to directly adopt such replay techniques

for TCP: (1) Replay each host’s TCP stack separately. This means we should record every packet

as they are the input to the stack, which is a significant overhead. (2) Replay the whole network al-

together, including all connections and switches, which is very expensive and hard to get right as

shown in §6.2.2. Deter customizes replay techniques for TCP: we replay each connection (a pair

of TCP stacks), and only record the mutations to the packet stream in between (drop/ECN) to re-

duce the overhead of recording every packet, while avoiding replay the whole network together. We

also introduce customized solutions to reduce the overhead of recording non-deterministic variables

inside the TCP stack.

Monitoring tools in datacenters. Per-packet monitoring tools39,33,98 and TCP execution tracing

tools34 provide detailed information for diagnosis, but running them continuously is too expen-

sive. To reduce overhead, people collect coarser-grained information such as TCP counters137,61

or per-flow stats on the host166 or switches8,129. There are also query systems (e.g., Everflow190,

Trumpet145, Marple147) that allow operators to specify the packets and events to capture in a net-

work. Deter is complementary to these works in that it enables deterministic replay for debugging

the same performance problem iteratively. Deter requires low recording overhead at runtime and

allow operators to use all kinds of monitoring tools during the replay.

Other network-related replay. OFRewind180 replays the switch control plane, while Deter

replays TCP and the switch data plane. Monkey73 and Swing173 are tools that synthesize testing

traffic based on the runtime recorded traffic pattern, while Deter focus on replay for diagnosis.

6.7 Discussion

Extension to other network transport features: Here are a few examples of transport features

that may affect the replay.
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Generic receive offload (GRO): If GRO21 is enabled, we also need to record the way it merges pack-

ets. It just requires recording the number of packets being merged into one segment, which is avail-

able in the skb metadata and just costs 6 bits per merge. Usually each merging contains 10s of pack-

ets, so the overhead is low. During the replay, the packet corrector should also merge the incoming

packets as recorded.

Delay-based congestion control (CC): Our current prototype is based on loss-based CC. To extend

our solution to delayed-based CC, we need to record the timestamps that used for updating CC

states. We can compress them a lot, because consecutive timestamps differ by a few microseconds

most of the time, so we just need a few bits to record the delta.

RED in switch: RED randomly drop packets. Replaying the queues and drops may have a large

error in this case, but replaying TCP connections is not affected. This shows the benefit of our de-

sign decision: decoupling the replay of each individual connection, so that it does not depend on

switches.

Use cases of Deter. Deter is designed for ease of use. The only requirement is that the user

turns on Deter on both endpoints of the connection, which is often the case for network operators

and cloud tenants. Internet application developers can also use Deter for performance testing.

Datacenter network operators may also benefit from replaying the switch queues, because they may

have the network topology and switch data plane simulators.

Host stack changes. If the host stack changes, Deter may need to change accordingly, but it is not

hard. First, Linux already abstracts CC out of basic TCP framework, so changes to CC does not

need to recode Deter in the basic framework, which contains most of the recording. Besides, we

have principles for what to record and replay (Table 6.1 and §6.4), so it would be easy to identify the

required changes to Deter.

We expect the recording overhead would not change much with stack changes, because most of

the overhead comes from socket calls and lock acquisitions, both of which are not sensitive to stack
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changes: socket call is determined by the applications, and most lock acquisitions are for receiving

packets whose amount is determined by traffic volumes. The overhead associated with kernel vari-

ables is very small with our technique of recording their updates or influences, and we believe this

benefit remains in the future.

Generality to other transport protocols. We believe the replay technique is general across different

protocols. Basically, what other transport protocols do are not very different from TCP: reads

from/writes to applications, sends/receives packets, and possibly controls sending rate based on

packet measurement. Similar to TCP, we just need to record the interaction with the application

and the network, and then make sure we handle the concurrency inside the protocol.

Network failures. Network failures (e.g., routing fluctuations or blackholes) do not affect Deter

replaying the connections, but do affect Deter replaying the switch queues which assumes that

the routing states are stable. However, network failures are themselves bigger problems than the

problems related to switch queueing, and there are many other works focus on addressing such

issues190,96,132,179,129. Deter is complementary to these works, because it helps to understand how

TCP reacts to such conditions.

Storage overhead of socket calls. Usually the number of socket calls is much smaller than the

number of packets. Production datacenter survey57,94 shows that most network bytes are from

large flows (>1MB), which usually mean large send/receive sizes. Moreover, even if an application

has many short messages, the developers tend to batch them into a large one to reduce the CPU

overhead. If some network does only have applications that generate small socket calls, recording

every socket calls may be high overhead.
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6.8 Summary

Deter enables deterministic TCP replay, which can reproduce performance problems, provide

packet traces and support tracing of TCP executions. Deter eliminates the butterfly effect by re-

playing individual TCP connections separately and capture all the interactions between a TCP con-

nection with the application and the network in a lightweight fashion. We demonstrate that Deter

can be very effective in diagnosing a variety of TCP performance problems.
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7
Conclusion

7.1 The Overall Picture

To provide high application performance, network control and telemetry play important roles. We

design control schemes that can robustly provide high performance under dynamics, and telemetry

systems that are both precise and fine-grained to aid in performance troubleshooting.

Applications need high-speed data transfer and fine-grained coordination across servers to achieve
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high performance. To this end, we design HPCC to robustly provide high throughput and speed-

of-light latency, even under highly dynamic traffic. With HPCC, applications have more freedom in

sending messages and scaling out without worrying about the performance. We also design Sundial

to robustly provide∼100ns precision bound under various types of failures in production. With

Sundial, many distributed systems and databases can achieve high throughput and low latency of

transactions, with strong consistency.

To troubleshoot performance issues related to networking, we design precise and fine-grained

telemetry systems for both switches and host networking stack. We design FlowRadar and Loss-

Radar to expose precise per-flow and per-loss information, so that we can pinpoint the location and

culprits of many performance problems. We also design DETER to expose precise per-packet per-

line-of-code information from the TCP stack, which helps debug many performance issues caused

by TCP and its interaction with the network. We can continuously run the resource-efficient run-

time monitoring of these systems, and easily zoom into the problems when necessary.

7.2 Broader Impact

HPCC has wide and high impacts. Alibaba cloud has already deployed HPCC. Beyond that, var-

ious switch and NIC vendors (Intel, Mellanox, Broadcom, Cisco, Innovium, Marvell, etc.) have

supported HPCC in their recent products. Moreover, major cloud providers, switch vendors, and

NIC vendors are pushing the standardization of HPCC: a recent IETF draft of HPCCwas jointly

written by Alibaba, Intel, andMellanox, with the most recent version in September 2020.

We have already built a Sundial prototype in Google and deployed it on a median-scale (>500

servers) test cluster, although Sundial was recently designed in mid 2020. Additionally, we have

shown huge performance improvements in Spanner77 and in Swift118 brought by Sundial.

Our design of FlowRadar and LossRadar resulted in a joint patent with Barefoot/Intel, and Al-
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ibaba is very interested in using the technique for loss detection.

DETER’s Linux kernel-based implementation is open-sourced, and we revealed several TCP

problems when running large distributed systems such as Spark and RPC. In addition, many soft-

ware engineers are very interested in leveraging techniques of DETER to diagnose transport prob-

lems in their cloud.

7.3 Summary of Contributions

We summarize the contributions here.

New objectives for network control and telemetry. By observing the challenges faced today, we

propose qualitatively better objectives than existing approaches:

(1) Adding robustness to performance-critical control tasks.

(2) Designing telemetry systems that are both precise and fine-grained.

The high impacts of systems in this dissertation reflect the importance of these new objectives.

Guided by the new objectives, we design systems based on the opportunities for codesigning

different hardware and software components. We have the following three design principles that

back the design.

Closing the gap between observation and control to make control precise and timely. In

HPCC, we propose to close the gap by using inflight bytes for both observation and control, so it

can converge in just 1 RTT to high throughput and zero queueing delay in most cases. In Sundial,

we propose to close the gap by having the controller precompute a backup plan, based on which

each device can make a quick decision with local observation.

Designing new algorithms and data structures to make effective use of different devices’ capa-

bilities. In Sundial, we design a new algorithm for finding the generic backup plan based on graph

theory, so it is simple enough to fit in devices’ limited capability. In FlowRadar and LossRadar,
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the data structures in switches embrace hash collisions by using XOR-based encoding. Finally, in

DETER, we design a unique record and replay technique customized to TCP to enable extremely

lightweight recording in the hosts.

Rethinking the division of labor among switches, hosts, and the controller with a paradigm

shift away from the self-contained design model. In HPCC, the observation of total inflight

bytes is divided into switch providing raw states and hosts calculating total inflight bytes. In Sun-

dial, the failure recovery is divided into controller computing a backup plan and device-local reac-

tion. In FlowRadar and LossRadar, we decouple the maintenance of hash tables into switch-local

simple encoding and the in-controller cross-switch decoding. In DETER, the detailed information

is retained by lightweight recording in the host and replaying in the controller.

7.4 Concluding Remarks

As the performance requirement continues to grow in the post-Moore era, hardware-software code-

sign is an exciting area and will become the norm in the future, where software is used as the glue be-

tween specialized hardware and application needs. However, unlike software engineering of which

we have more than 50 years of experience1, hardware-software codesign is just beginning. In this

dissertation, we design and build several concrete systems, in the context of networking, as an initial

exploration of hardware-software codesign.

In the future, we hope to continue investigating hardware-software codesign, in both network-

ing and the broader system context, and from both performance perspective and other perspec-

tives (e.g., reliability). And we hope to distill principles of developing new systems in the context of

hardware-software codesign.
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