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ABSTRACT
Congestion control (CC) is the key to achieving ultra-low latency,

high bandwidth and network stability in high-speed networks. From

years of experience operating large-scale and high-speed RDMA

networks, we find the existing high-speed CC schemes have inher-

ent limitations for reaching these goals. In this paper, we present

HPCC (High Precision Congestion Control), a new high-speed CC

mechanism which achieves the three goals simultaneously. HPCC

leverages in-network telemetry (INT) to obtain precise link load

information and controls traffic precisely. By addressing challenges

such as delayed INT information during congestion and overreac-

tion to INT information, HPCC can quickly converge to utilize free

bandwidth while avoiding congestion, and can maintain near-zero

in-network queues for ultra-low latency. HPCC is also fair and

easy to deploy in hardware. We implement HPCC with commodity

programmable NICs and switches. In our evaluation, compared to

DCQCN and TIMELY, HPCC shortens flow completion times by up

to 95%, causing little congestion even under large-scale incasts.
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1 INTRODUCTION
The link speed in data center networks has grown from 1Gbps to

100Gbps in the past decade, and this growth is continuing. Ultra-

low latency and high bandwidth, which are demanded by more

and more applications, are two critical requirements in today’s and

future high-speed networks.

Specifically, as one of the largest cloud providers in the world,

we observe two critical trends in our data centers that drive the
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demand on high-speed networks. The first trend is new data cen-

ter architectures like resource disaggregation and heterogeneous

computing. In resource disaggregation, CPUs need high-speed net-

working with remote resources like GPU, memory and disk. Accord-

ing to a recent study [17], resource disaggregation requires 3-5µs
network latency and 40-100Gbps network bandwidth to maintain

good application-level performance. In heterogeneous computing

environments, different computing chips, e.g. CPU, FPGA, and GPU,
also need high-speed interconnections, and the lower the latency,

the better. The second trend is new applications like storage on

high I/O speed media, e.g. NVMe (non-volatile memory express)

and large-scale machine learning training on high computation

speed devices, e.g. GPU and ASIC. These applications periodically

transfer large volume data, and their performance bottleneck is

usually in the network since their storage and computation speeds

are very fast.

Given that traditional software-based network stacks in hosts

can no longer sustain the critical latency and bandwidth require-

ments [43], offloading network stacks into hardware is an inevitable

direction in high-speed networks. In recent years, we deployed

large-scale networks with RDMA (remote direct memory access)

over Converged Ethernet Version 2 (RoCEv2) in our data centers

as our current hardware-offloading solution.

Unfortunately, after operating large-scale RoCEv2 networks for

years, we find that RDMA networks face fundamental challenges

to reconcile low latency, high bandwidth utilization, and high sta-

bility. This is because high speed implies that flows start at line rate

and aggressively grab available network capacity, which can easily

cause severe congestion in large-scale networks. In addition, high

throughput usually results in deep packet queueing, which under-

mines the performance of latency-sensitive flows and the ability of

the network to handle unexpected congestion. We highlight two

representative cases among the many we encountered in practice

to demonstrate the difficulty:

Case-1: PFC (priority flow control) storms. A cloud storage

(test) cluster with RDMA once encountered a network-wide, large-

amplitude traffic drop due to a long-lasting PFC storm. This was

triggered by a large incast event together with a vendor bug which

caused the switch to keep sending PFC pause frames indefinitely.

Because incast events and congestion are the norm in this type of

cluster, and we are not sure whether there will be other vendor bugs

that create PFC storms, we decided to try our best to prevent any

PFC pauses. Therefore, we tuned the CC algorithm to reduce rates

quickly and increase rates conservatively to avoid triggering PFC

pauses. We did get fewer PFC pauses (lower risk), but the average

link utilization in the network was very low (higher cost).

Case-2: Surprisingly long latency. A machine learning (ML)

application complained about > 100us average latency for short

messages; its expectation was a tail latency of < 50µs with RDMA.
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The reason for the long latency, which we finally dug out, was the

in-network queues occupied majorly by a cloud storage system that

is bandwidth intensive in the same cluster. As a result, we have to

separate the two applications by deploying the ML application to a

new cluster. The new cluster had low utilization (higher cost) given

that the ML application is not very bandwidth hungry.

To address the difficulty to reconcile latency, bandwidth/utilization,

and stability, we believe a good design of CC is the key. This is

because CC is the primary mechanism to avoid packet buffering or

loss under high traffic loads. If CC fails frequently, backup methods

like PFC or packet retransmissions can either introduce stability

concerns or suffer a large performance penalty. Unfortunately, we

found state-of-art CC mechanisms in RDMA networks, such as

DCQCN [43] and TIMELY [31], have some essential limitations:

Slow convergence. With coarse-grained feedback signals, such

as ECN or RTT, current CC schemes do not know exactly how

much to increase or decrease sending rates. Therefore, they use

heuristics to guess the rate updates and try to iteratively converge

to a stable rate distribution. Such iterative methods are slow for

handling large-scale congestion events[25], as we can see in Case-1.

Unavoidable packet queueing. A DCQCN sender leverages the

one-bit ECN mark to judge the risk of congestion, and a TIMELY

sender uses the increase of RTT to detect congestion. Therefore,

the sender starts to reduce flow rates only after a queue builds

up. These built-up queues can significantly increase the network

latency, and this is exactly the issue met by the ML application at

the beginning in Case-2.

Complicated parameter tuning. The heuristics used by current

CC algorithms to adjust sending rates have many parameters to

tune for a specific network environment. For instance, DCQCN has

15 knobs to set up. As a result, operators usually face a complex

and time-consuming parameter tuning stage in daily RDMA net-

work operations, which significantly increases the risk of incorrect

settings that cause instability or poor performance.

The fundamental cause of the preceding three limitations is the

lack of fine-grained network load information in legacy networks

– ECN is the only feedback an end host can get from switches,

and RTT is a pure end-to-end measurement without switches’ in-

volvement. However, this situation has recently changed. With

In-network telemetry (INT) features that have become available in

new switching ASICs [2–4], obtaining fine-grained network load

information and using it to improve CC has become possible in

production networks.

In this paper, we propose a new CCmechanism, HPCC (High Pre-

cision Congestion Control), for large-scale, high-speed networks.

The key idea behind HPCC is to leverage the precise link load in-

formation from INT to compute accurate flow rate updates. Unlike

existing approaches that often require a large number of iterations

to find the proper flow rates, HPCC requires only one rate update

step in most cases. Using precise information from INT enables

HPCC to address the three limitations in current CC schemes. First,

HPCC senders can quickly ramp up flow rates for high utilization

or ramp down flow rates for congestion avoidance. Second, HPCC

senders can quickly adjust the flow rates to keep each link’s in-

put rate slightly lower than the link’s capacity, preventing queues

from being built-up as well as preserving high link utilization. Fi-

nally, since sending rates are computed precisely based on direct

measurements at switches, HPCC requires merely 3 independent

parameters that are used to tune fairness and efficiency.

On the flip side, leveraging INT information in CC is not straight-

forward. There are two main challenges to design HPCC. First, INT

information piggybacked on packets can be delayed by link con-

gestion, which can defer the flow rate reduction for resolving the

congestion. In HPCC, our CC algorithm aims to limit and control

the total inflight bytes to busy links, preventing senders from send-

ing extra traffic even if the feedback gets delayed. Second, despite

that INT information is in all the ACK packets, there can be destruc-

tive overreactions if a sender blindly reacts to all the information

for fast reaction (§3.2). Our CC algorithm selectively uses INT infor-

mation by combining per-ACK and per-RTT reactions, achieving

fast reaction without overreaction.

HPCC meets our goals of achieving ultra-low latency, high band-

width, and high stability simultaneously in large-scale high-speed

networks. In addition, HPCC also has the following essential prop-

erties for being practical: (i) Deployment ready: It merely requires

standard INT features (with a trivial and optional extension for

efficiency) in switches and is friendly to implementation in NIC

hardware. (ii) Fairness: It separates efficiency and fairness control.

It uses multiplicative increase and decrease to converge quickly to

the proper rate on each link, ensuring efficiency and stability, while

it uses additive increase to move towards fairness for long flows.

HPCC’s stability and fairness are guaranteed in theory (Appen-

dix A). We implement HPCC on commodity NIC with FPGA and

commodity switching ASIC with P4 programmability. With testbed

experiments and large-scale simulations, we show that compared

with DCQCN, TIMELY and other alternatives, HPCC reacts faster

to available bandwidth and congestion and maintains close-to-zero

queues. In our 32-server testbed, even under 50% traffic load, HPCC

keeps the queue size zero at the median and 22.9KB (only 7.3µs
queueing delay) at the 99th-percentile , which results in a 95% reduc-

tion in the 99th-percentile latency compared to DCQCN without

sacrificing throughput. In our 320-server simulation, even under

incast events where PFC storms happen frequently with DCQCN

and TIMELY, PFC pauses are not triggered with HPCC.

Note that despite HPCC having been designed from our experi-

ences with RDMA networks, we believe its insights and designs are

also suitable for other high-speed networking solutions in general.

2 EXPERIENCE AND MOTIVATION
In this section, we present our production data and experiences that

demonstrate the difficulty to operate large-scale, high-speed RDMA

networks due to current CC schemes’ limitations. We also propose

some key directions and requirements for the next generation CC

of high-speed networks.

2.1 Our large RDMA deployments
We adopt RDMA in our data centers for ultra-low latency and large

bandwidth demanded by multiple critical applications, such as dis-

tributed storage, database, and deep learning training frameworks.

Our data center network is a Clos topology with three layers

– ToR, Agg, and Core switches. A PoD (point-of-delivery), which
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Figure 1: The impacts of PFC pauses in production.

consists of tens of ToR switches that are interconnected by a num-

ber of Agg switches, is a basic deployment unit. Different PoDs

are interconnected by Core switches. Each server has two uplinks

connected with two ToR switches for high availability of servers,

as required by our customers. In the current RDMA deployment,

each PoD is an independent RDMA domain, which means that only

servers within the same PoD can communicate with RDMA.

We use the latest production-ready version of RoCEv2: DCQCN

is used as the congestion control (CC) solution which is integrated

into hardware by RDMA NIC vendors. PFC [1] is enabled in NICs

and switches for lossless network requirements. The strategy to

recover from packet loss is “go-back-N”, which means a NACK will

be sent from receiver to sender if the former finds a lost packet, and

the sender will resend all packets starting from the lost packet.

There have been tens of thousands of servers supporting RDMA,

carrying our databases, cloud storage, data analysis systems, HPC

and machine learning applications in production. Applications have

reported impressive improvements by adopting RDMA. For in-

stance, distributed machine learning training has been accelerated

by 100+ times compared with the TCP/IP version, and the I/O speed

of SSD-based cloud storage has been boosted by about 50 times

compared to the TCP/IP version. These improvements majorly stem

from the hardware offloading characteristic of RDMA.

2.2 Our goals for RDMA
Besides ultra-low latency and high bandwidth, network stability

and operational complexity are also critical in RDMA networks,

because RDMA networks face more risks and tighter performance

requirements than TCP/IP networks.

First of all, RDMA hosts are aggressive for resources. They start

sending at line rate, which makes common problems like incast

much more severe than TCP/IP. The high risk of congestion also

means a high risk to trigger PFC pauses.

Second, PFC has the potential for large and destructive impact on

networks. PFC pauses all upstream interfaces once it detects a risk

of packet loss, and the pauses can propagate via a tree-like graph

to multiple hops away. Such spreading of congestion can possibly

trigger PFC deadlocks [21, 23, 38] and PFC storms (Case-1 in §1)

that can silence a lot of senders even if the network has free capacity.

Despite the probability of PFC deadlocks and storms being fairly

small, they are still big threats to operators and applications, since

currently we have no methods to guarantee they won’t occur [23].

Third, even in normal cases, PFC can still suppress a large number

of innocent senders. For instance, by monitoring the propagation

graph of each PFC pause in a PoD, we can see that about 10% of

PFC events propagate three hops (Figure 1a), which means the

whole PoD is impacted due to a single or a small number of senders.
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(b) PFC duration and latency with
30% network load + incast

Figure 2: FCT slowdown and PFC pauses with different rate
increasing timers in DCQCN, usingWebSearch.

Figure 1b shows that more than 10% PFC pauses suppress more

than 3% of the total network capacity of a data center, and in the

worst case the capacity loss can be 25%! Again, we can see that the

25% capacity loss is rare, but it is still a threat which operators have

to plan for.

Finally, operational complexity is an important factor that is pre-

viously neglected. Because of the high performance requirement

and stability risks, it often takes months to tune the parameters for

RDMA before actual deployment, in order to find a good balance.

Moreover, because different applications have different traffic pat-

terns, and different environments have different topologies, link

speeds, and switch buffer sizes, operators have to tune parameters

for the deployment of each new application and new environment.

Therefore, we have four essential goals for our RDMA networks:

(i) latency should be as low as possible; (ii) bandwidth/utilization

should be as high as possible; (iii) congestion and PFC pauses should

be as few as possible; (iv) the operational complexity should be as

low as possible. Achieving the four goals will provide huge value to

our customers and ourselves, and we believe the key to achieving

them is a proper CC mechanism.

2.3 Trade-offs in current RDMA CC
DCQCN is the default CC in our RDMA networks. It leverages ECN

to discover congestion risk and reacts quickly. It also allows hosts

to begin transmitting aggressively at line rate and increase their

rates quickly after transient congestion (e.g. FastRecovery [43]).

Nonetheless, its effectiveness depends on whether its parameters

are suitable to specific network environments.

In our practice, operators always struggle to balance two trade-

offs in DCQCN configurations: throughput v.s. stability, e.g. Case-1
in §1, and bandwidth v.s. latency, e.g. Case-2 in §1. To make it con-

crete, since we cannot directly change configurations in production,

we highlight the two trade-offs with experiments on a testbed that

has similar hardware/software environments but a smaller topology

compared to our production networks. The testbed is a PoD with

230 servers (each has two 25Gbps uplinks), 16 ToR switches and

8 Agg switches connected by 100Gbps links. We intentionally use

public traffic workloads, e.g. WebSearch [8] and FB_Hadoop [37],

instead of our own traffic traces for reproductivity.

Throughput vs. Stability It is hard to achieve high throughput

without harming the network’s stability in one DCQCN configura-

tion. To quickly utilize free capacity, senders must have high sensi-

tivity to available bandwidth and increase flow rates fast, while such

aggressive behavior can easily trigger buffer overflows and traffic

oscillations in the network, resulting in large scale PFC pauses. For
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Figure 3: 95-percentile FCT slowdown distribution with dif-
ferent ECN thresholds, usingWebSearch.

example, Figure 2 approximately shows the issue in Case-1 of §1.

Figure 2a shows the FCT (flow completion time) slowdown
1
at 95-

percentile under different DCQCN rate-increasing timers (Ti ) and
rate-decreasing timers (Td ) with 30% average network load from

WebSearch. Setting Ti = 55µs , Td = 50µs is from DCQCN’s original

paper; Ti = 300µs , Td = 4µs is a vendor’s default; and Ti = 900µs ,
Td = 4µs is a more conservative version from us. Figure 2a shows

that smaller (Ti ) and larger (Td ) reduce the FCT slowdown because

they make senders more aggressive to detect and utilize available

bandwidth. However, smallerTi and largerTd is more likely to have

more and longer PFC pauses compared to more conservative timer

settings during incast events. Figure 2b shows the PFC pause dura-

tion and 95-percentile latency of short flows when there are incast

events whose total load is 2% of the network’s total capacity. Each

incast event is from 60 senders to 1 receiver. We can see that smaller

(Ti ) and larger (Td ) suffers from longer PFC pause durations and

larger tail latencies of flows. We also have tried out different DC-

QCN parameters, different average link loads and different traffic

traces, and the trade-off between throughput and stability remains.

Bandwidth vs. Latency Though “high bandwidth and low la-

tency” has become a “catchphrase” of RDMA, we find it is practi-

cally hard to achieve them simultaneously in one DCQCN config-

uration. This is because for consistently low latency the network

needs to maintain steadily small queues in buffers (which means

low ECN marking thresholds), while senders will be too conser-

vative to increase flow rates if ECN marking thresholds are low.

For example, Figure 3 approximately shows the issue in Case-2

of §1. It shows the FCT slowdown with different ECN marking

thresholds (Kmin , Kmax ) in switches andWebSearch as input traf-

fic loads. Figure 3a shows that when we use low ECN thresholds,

small flows which are latency-sensitive have lower FCT, while big

flows which are bandwidth-sensitive suffer from larger FCT. The

trend is more obvious when the network load is higher (Figure 3b

when the average link load is 50%). For instance, the 95th-percentile

RTT is about 150µs — 30 (slowdown) × 5µs (baseline RTT) — when

Kmin = 400KB, Kmax = 1600KB, which is a lot worse than the

ML application’s requirement (<50µs) in Case-2. We have tried

out different DCQCN parameters, different average link loads and

different traffic traces, and the trade-off between bandwidth and

latency remains.

As mentioned in §1, we are usually forced to sacrifice utilization

(or money) to achieve latency and stability. The unsatisfactory out-

come made us rethink about the fundamental reasons for the tight

tensions among latency, bandwidth, and stability. Essentially, as the

1
“FCT slowdown” means a flow’s actual FCT normalized by its ideal FCT when the

network only has this flow.

first generation of CC for RDMA designed more than 5 years ago,

DCQCN has several design issues due to the limitations of hardware

when it was proposed, which results in the challenges to network

operations. For instance, DCQCN’s timer-based scheduling inher-

ently creates the tradeoff between throughput (more aggressive

timers) and stability (less aggressive timers), while its ECN (queue)

based congestion signaling directly results in the trade-off between

latency (lower ECN thresholds) and bandwidth (higher ECN thresh-

olds). Other than the preceding two trade-offs, the timer-based

scheduling can also trigger traffic oscillations during link failures;

the queue-based feedback also creates a new trade-off between ECN

threshold and PFC threshold. We omit the details due to space limit.

Further, thoughwe have less production experiencewith TIMELY,

Microsoft reports that TIMELY’s performance is comparable to or

worse than DCQCN [44], which is also validated in §5.3.

2.4 Next generation of high-speed CC
We advocate that the next generation of CC for RDMA or other

types of high-speed networks should have the following proper-

ties simultaneously to make a significant improvement on both

application performance and network stability:

(i) Fast converge. The network can quickly converge to high uti-

lization or congestion avoidance. The timing of traffic adjustments

should be adaptive to specific network environments rather than

manually configured.

(ii) Close-to-empty queue. The queue sizes of in-network buffers

are maintained steadily low, close-to-zero.

(iii) Few parameters. The new CC should not rely on lots of

parameters that require the operators to tune. Instead, it should

adapt to the environment and traffic pattern itself, so that it can

reduce the operational complexity.

(iv) Fairness. The new CC ensures fairness among flows.

(v) Easy to deploy on hardware. The new CC algorithm is sim-

ple enough to be implemented on commodity NIC hardware and

commodity switch hardware.

Nowadays, we have seen two critical trends that have the poten-

tial to realize a CC which satisfies all of the preceding requirements.

The first trend is that switches are more open and flexible in the data

plane. Especially, in-network telemetry (INT) is being popularized

quickly. Almost all the switch vendors we know have INT feature

enabled already in their new products (e.g., Barefoot Tofino [2],

Broadcom Tomahawk3 [3], Broadcom Trident3 [4], etc.). With INT,

a sender can know exactly the loads of the links along a flow’s path

from an ACK packet, which facilitates the sender to make accurate

flow rate adjustments. The second trend is that NIC hardware is

becoming more capable and programmable. They have faster speed

and more resources to expose packet level events and processing.

With these new hardware features, we design and implement HPCC,

which achieves the desired CC properties simultaneously.

3 DESIGN
The key design choice of HPCC is to rely on switches to provide

fine-grained load information, such as queue size and accumulated

tx/rx traffic to compute precise flow rates. This has two major

benefits: (i) HPCC can quickly converge to proper flow rates to
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Figure 4: The overview of HPCC framework.

highly utilize bandwidth while avoiding congestion; and (ii) HPCC

can consistently maintain a close-to-zero queue for low latency.

Nonetheless, there are two major challenges to realize the design

choice. First, during congestion, feedback signals can be delayed,

causing a high rate to persist for a long time. This results in much

more inflight data from each sender than needed to sustain high

utilization; as our experiment in §2.3 shows, each sender can have

significantly more inflight data than the BDP (Bandwidth-delay

product)
2
. To avoid this problem, HPCC directly controls the num-

ber of inflight bytes, in contrast to DCQCN and TIMELY that only

control the sending rate. In this way, even if feedback signals are

delayed, the senders do not send excessive packets because the

total inflight bytes are limited. Second, while a HPCC sender can

react to network load information in each ACK, it must carefully

navigate the tension between reacting quickly and overreacting

to congestion feedback. We combine RTT-based and ACK-based

reactions to overcome this tension.

3.1 HPCC framework
HPCC is a sender-driven CC framework. As shown in Figure 4, each

packet a sender sends will be acknowledged by the receiver. During

the propagation of the packet from the sender to the receiver, each

switch along the path leverages the INT feature of its switching

ASIC to insert some meta-data that reports the current load of the

packet’s egress port, including timestamp (ts), queue length (qLen),
transmitted bytes (txBytes), and the link bandwidth capacity (B).

When the receiver gets the packet, it copies all the meta-data

recorded by the switches to the ACK message it sends back to the

sender. The sender decides how to adjust its flow rate each time it

receives an ACK with network load information.

3.2 CC based on inflight bytes
HPCC is a window-based CC scheme that controls the number of

inflight bytes. The inflight bytes mean the amount of data that have

been sent, but not acknowledged at the sender yet.

Controlling inflight bytes has an important advantage compared

to controlling rates. In the absence of congestion, the inflight bytes

and rate are interchangeable with equation in f liдht = rate × T
whereT is the base propagation RTT. However, controlling inflight

bytes greatly improves the tolerance to delayed feedback during

congestion. Compared to a pure rate-based CC scheme which con-

tinuously sends packets before feedback comes, the control on

the inflight bytes ensures the number of inflight bytes is within a

limit, making senders immediately stop sending when the limit is

2
In Figure 2b, the PFC being propagated to hosts means at least 3 switches (intra-PoD)

has reached the PFC threshold. So the inflight bytes is at least 11×BDP per flow on

average, calculated based on our data center spec and the incast ratio.

reached, no matter how long the feedback gets delayed. As a result,

the whole network is greatly stabilized.

Senders limit inflight byteswith sendingwindows. Each sender
maintains a sending window, which limits the inflight bytes it can

send. Using a window is a standard idea in TCP, but the benefits for

tolerance to feedback delays are substantial in data centers, because

the queueing delay (hence the feedback delay) can be orders of mag-

nitude higher than the ultra-low base RTT [26]. The initial sending

window size should be set so that flows can start at line rate, so we

useWinit = BN IC ×T , where BN IC is the NIC bandwidth.

In addition to thewindow, we also pace the packet sending rate to

avoid bursty traffic. Packet pacer is generally available in NICs [43].

The pacing rate is R = W
T , which is the rate that a window sizeW

can achieve in a network with base RTT T .

Congestion signal and control law based on inflight bytes.
In addition to the sending window, HPCC’s congestion signal and

control law are also based on the inflight bytes.

The inflight bytes directly corresponds to the link utilization.

Specifically, for a link, the inflight bytes is the total inflight bytes

of all flows traversing it. Assume a link’s bandwidth is B, and the

i-th flow traversing it has a window sizeWi . The inflight bytes for

this link is I =
∑
Wi .

If I < B × T , we have

∑ Wi
T < B. Wi

T is the throughput that

flow i achieves if there is no congestion. So in this case, the total

throughput of all these flows is lower than the link bandwidth.

If I ≥ B × T , we have

∑ Wi
T ≥ B. In this case, there must be

congestion (otherwise, the total throughput would exceed the link

capacity which is impossible), and queues form. The congestion can

be on this link, or somewhere else if there are multiple bottlenecks.

So our goal is to control I to be slightly smaller than B ×T for

every link, such that there is no congestion and no queues.

Estimating the inflight bytes for each link. The first question is how

a sender uses INT information to estimate Ij for each link j on its

path. Specifically, the inflight bytes consist of data packets in the

queues and in the pipeline. So for each link j, we estimate Ij using
its queue length (qlen) and its output rate (txRate), as in Eqn (1):

Ij = qlen + txRate ×T (1)

where qlen is directly from INT. txRate is calcualted with txBytes

and ts: txRate =
ack1 .txBytes−ack0 .txBytes

ack1 .ts−ack0 .ts
where ack1 and ack0

are two ACKs. txRate × T estimates the number of bytes in the

pipeline. Eqn (1) assumes all flows have the same known base RTT.

This is possible in data centers, where the RTT between most server

pairs are very close due to the regularity of the topology.

In the most common congestion scenario where there is one

bottleneck j , Ij is the estimation of the total inflight bytes of all flows

traversing link j. In the case where some flows traverse multiple

bottlenecks, Ij is the lower bound of total inflight bytes.

Reacting to the signals. Each sender should adjust its window so

that Ij for each link j on its flow’s path is slightly lower than Bj ×T–
specifically, to be η × Bj ×T (η is a constant close to 1, e.g., 95%).

Thus, for link j , each sender can multiplicatively reduce its window

by a factor of kj =
Ij

η×Bj×T = Uj/η, where Uj is the normalized

inflight bytes of link j:

Uj =
Ij

Bj ×T
=
qlenj + txRatej ×T

Bj ×T
=

qlenj
Bj ×T

+
txRatej

Bj
(2)
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Figure 5: Overreaction to two sequential ACKs.

Sender i should react to the most congested link:

Wi =
Wi

max j (kj )
+WAI =

Wi

max j (Uj )/η
+WAI (3)

whereWAI is an additive increase (AI) part to ensure fairness, which

is very small. Note that the first term in Eqn (3) is an MIMD term.

This decouples the utilization control from the fairness control to

ensure senders quickly grab free bandwidth or avoid congestion,

which is inspired by XCP [27].

Note that if there aremultiple bottlenecks, Eqn (1) under-estimates

the number of inflight bytes, so HPCC needs multiple rounds of

adjustments to resolve congestion. However, during incast cases,

which are the most common congestion cases in data center [39],

there is only one bottleneck, so HPCC can resolve the congestion

with only one round of adjustment (Appendix A).

Fast reaction without overreaction. With Eqn (2) and Eqn (3),

an HPCC sender can react with every ACK. Reacting to each ACK

enables fast congestion avoidance, but it reacts multiple times to

ACKs describing the same packets and queues. Figure 5 shows an

example of how reacting to each ACK causes overreaction. At the

beginning, in Figure 5(a), there are three packets (P1, P2 and P5)
from sender S1 and two packets (P3 and P4) from sender S2 queued
in an egress buffer of a link. When P1 is dequeued, the buffer has 4
packets. So its ACK to S1 indicates qLen = 4 (Figure 5(b)). Suppose

S1 uses Eqn (2) and Eqn (3) to decideW (1) =W (0)/2, whereW (0) is

the window size of S1 in Figure 5(a). However, P2 also sees 4 packets
when it is dequeued in Figure 5(b) and its ACK to S1 has qLen = 4

in Figure 5(c). If S1 blindly updates its window size based on P2’s
ACK, it ends up withW (2) =W (1)/2 =W (0)/4. This conservative

window size is an overreaction because P1 and P2’s ACKs report
the link conditions for almost the same set of packets.

One way to prevent overreaction is to make sure that the window

is only adjusted when an ACK that describes a brand new set of

packets is received. For instance, in Figure 5(c), P7 is a packet which
is sent out from S1 after S1 gets the ACK of P1. Therefore, the
packets P7 sees in any queue are totally different from what P1
sees. In other words, the network status reported in P1’s and P7’s
ACKs have no overlap. Therefore, for avoiding overreaction, we

always remember the first packet (Q) sent right after the window
is adjusted and only adjust the window again when the sender gets

Q’s ACK. However, the drawback of this strategy is that merely

updating window each RTT might be too slow for handling urgent

cases like failures and incasts (§5.4).

HPCC combines the per-ACK and per-RTT strategies to achieve

fast reaction without overreaction. The key idea is to introduce

a reference window sizeW c
i , a runtime state updated in per-RTT

basis. Hence, only when receiving the ACK of the first packet sent

with the currentW c
i , we update it withW

c
i = Wi , i.e., assigning

the current window sizeWi to the reference window sizeW c
i . With

W c
i , the sender can safely update its window size using Eqn (4):

Wi =
W c
i

maxj (Uj )/η
+WAI (4)

Since Wi is computed from W c
i which is fixed in a RTT, the

sender does not overreact to the same network loads. For example,

in the case of Figure 5, we haveW (2) =W (1) =W (0)/2 =W c/2

even if S1 recomputes window sizes on ACKs of both P1 and P2.
Meanwhile, if the inflight bytes dramatically change within an RTT,

the window size is still adjusted by Eqn (4) becauseUj is updated.

Algorithm 1 Sender algorithm. ack .L is an array of link feedbacks in

the ACK; each link ack .L[i] has four fields: qlen, txBytes , ts , and B . L
is the sender’s record of link feedbacks at the last update.

1: function MeasureInflight(ack )
2: u = 0;

3: for each link i on the path do
4: txRate = ack .L[i ].txBytes−L[i ].txBytes

ack .L[i ].ts−L[i ].ts ;

5: u′ =
min(ack .L[i ].qlen,L[i ].qlen)

ack .L[i ].B ·T + txRate
ack .L[i ].B ;

6: if u′ > u then
7: u = u′

; τ = ack .L[i].ts − L[i].ts ;
8: τ = min(τ , T );
9: U = (1 − τ

T ) ·U + τ
T · u ;

10: return U ;

11: function ComputeWind(U , updateW c )
12: if U >= η or incStaдe >=maxStaдe then
13: W = W c

U /η +WAI ;

14: if updateW c then
15: incStaдe = 0;W c =W ;

16: else
17: W =W c +WAI ;

18: if updateW c then
19: incStaдe + +;W c =W ;

20: returnW ;

21: procedure NewAck(ack )
22: if ack .seq>lastU pdateSeq then
23: W = ComputeWind(MeasureInflight(ack), T rue);
24: lastU pdateSeq = snd_nxt ;
25: else
26: W = ComputeWind(MeasureInflight(ack), False);
27: R = W

T ; L = ack .L;

The overall workflow of the sender side CC algorithm. Al-

gorithm 1 illustrates the overall process of CC at the sender side for

a single flow. Each newly received ACK message triggers the proce-

dure NewACK at Line 21. At Line 22, the variable lastUpdateSeq
is used to remember the first packet sent with a new W c

, and

the sequence number in the incoming ACK should be larger than

lastUpdateSeq to trigger a new sync betweenW c
andW (Line 14-15

and 18-19). The sender also remembers the pacing rate and current
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INT information at Line 27. The sender computes a new window

sizeW at Line 23 or Line 26, depending on whether to updateW c
,

with function MeasureInflight and ComputeWind.

Function MeasureInflight estimates normalized inflight bytes

with Eqn (2) at Line 5. First, it computes txRate of each link from

the current and last accumulated transferred bytes txBytes and
timestamp ts (Line 4). It also uses the minimum of the current and

lastqlen to filter out noises inqlen (Line 5). The loop from Line 3 to 7

selects maxi (Ui ) in Eqn. (3). Instead of directly using maxi (Ui ), we
use an EWMA (Exponentially Weighted Moving Average) to filter

the noises from timer inaccuracy and transient queues. (Line 9).

Function ComputeWind combines multiplicative increase/

decrease (MI/MD) and additive increase (AI) to balance the reaction

speed and fairness. If a sender finds it should increase the window

size, it first tries AI formaxStaдe times with the stepWAI (Line 17).

If it still finds room to increase aftermaxStaдe times of AI or the

normalized inflight bytes is above η, it calls Eqn (4) once to quickly

ramp up or ramp down the window size (Line 12-13).

3.3 Parameters of HPCC
HPCC has three easy-to-set parameters: η,maxStaдe , andWAI . η
controls a simple tradeoff between utilization and transient queue

length (due to the temporary collision of packets caused by their

random arrivals. See Appendix A.1), so we set it to 95% by default,

which only loses 5% bandwidth but achieves almost zero queue.

maxStaдe controls a simple tradeoff between steady state stability

and the speed to reclaim free bandwidth. We findmaxStaдe = 5 is

conservatively large for stability, while the speed of reclaiming free

bandwidth is still much faster than traditional additive increase,

especially in high bandwidth networks.WAI controls the tradeoff

between the maximum number of concurrent flows on a link that

can sustain near-zero queues and the speed of convergence to fair-

ness (Appendix A.3). Normally we set a very smallWAI to support

a large number of concurrent flows on a link, because slower fair-

ness is not critical. A rule of thumb is to setWAI =
Winit×(1−η)

N ,

where N is the expected maximum number of concurrent flows on

a link. The intuition is that the total additive increase every round

(N ×WAI ) should not exceed the bandwidth headroom, and thus

no queue forms. Even if the actual number of concurrent flows on

a link exceeds N , the CC is still stable and achieves full utilization,

but just cannot maintain zero queues. Note that none of the three

parameters are reliability-critical.

3.4 Properties of HPCC

HPCC has fewer parameters and the tuning is simpler than
previous CC schemes. Most previous CC schemes, such as DC-

QCN[43], TIMELY[31] and DCTCP[8] which are productionized, do

not have precise feedback, so they have to use heuristics to infer the

current network state. These heuristics work differently in different

environments, so they have parameters for operators to tune for

the environments. On the other hand, HPCC uses precise feedback

to know the exact network state, so HPCC does not need heuristics,

and thus no need for the associated parameters.

For example, they heuristically maintain the equilibrium during

steady states (i.e., there are a fixed number of flows). Specifically,

the AI step and MD factor should be in a dynamic equilibrium.
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Figure 6: Comparison of txRate and rxRate.

The smaller AI step, the stabler equilibrium and slower fairness

convergence, but once some flow finishes, it takes longer time to

reclaim the free bandwidth. So operators have to carefully tune the

AI step to achieve a good tradeoff; DCQCN and TIMELY even have

two parameters for AI steps. In contrast, HPCC reclaims bandwidth

through MI, enabled by the precise link load information, so the AI

step can be small and is easy to set.

For theMD factor, they use EWMA to gradually find out the right

value. Average over longer terms give more precise MD factor and

thus stabler equilibrium, but once more flows join, it takes longer

time to resolve the congestion. So operators have to also carefully

tune α (the parameter that controls the weight of new feedback).

In contrast, HPCC directly knows the MD factor (Eqn (3)), so it

does not have this parameter. Note that the EWMA in HPCC is

parameterless: the weights of new ACKs are automatically scaled

with inter-packet time gaps.

There are also CC schemes that use explicit feedback, such as

XCP[27] and RCP[16]. However, their congestion signals are heuris-

tic combinations of different types of feedback, so they have scaling

parameters to tune their relative significance. In contrast, HPCC’s

congestion signal has a concrete physical meaning–the inflight

bytes, so it does not need parameters.

Key insight on using txRate. Using txRate in Eqn (3) allows

HPCC to accurately estimate the amount of inflight bytes, whereas

the same equation with rxRate has no concrete physical meaning.

In fact, rxRate and qlen overlap in terms of the congestion that

they measure: a high rxRate increases the queue occupancy, which
implies a large qlen. Therefore, schemes like XCP[27] and RCP[16]

that combine terms based on rxRate and qlen to measure the extent

of congestion require scaling parameters to tune the relative impor-

tance of these terms. Further, as first observed in ABC [20], using

txRate improves the accuracy of the feedback signal in a window-

based CC scheme like HPCC. The reason is that the txRate at a

switch queue reflects the rxRate at that queue one RTT in the future,
since packet transmissions from senders are clocked by acknowl-

edgements in a window-based scheme. Therefore, by adjusting the

window size based on txRate , the senders can anticipate what the

extent of congestion will be one RTT after the measurement is

taken at the switch, and react more accurately compared to when

using rxRate .
We perform a simple experiment to compare the use of txRate

and rxRate . We useHPCC andHPCC-rxRate (replacing txRate with
rxRate in all calculations) in a simple 2-to-1 congestion scenario.

Figure 6 shows the queue length over time. We can see that using

rxRate has oscillation before it finally converges, which is a result

of the aforementioned problems. On the other hand, using txRate
gracefully converges without oscillation.
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UDP
Header

nHop
(4 bits)

pathID
(12 bits)

1st Hop(64 bits)
B TS txBytes qLen

2nd Hop
(64 bits)

IB 
BTH

INT Overhead (42 bytes for 5 hops)

nHop (4 bits): it is initialized as 0 by the sender host; each switch add 1 to this counter
pathID (12 bits): XOR of all switch IDs along the path for detecting path changes
B (4 bits): the type of speed of the egress port (e.g. 40Gbps, 100Gbps, etc.)
TS (24 bits): the timestamp when the packet is emitted from its egress port
txBytes (20 bits): the accumulative total bytes sent from the egress port
qLen (16 bits): the current queue length of the egress port

Figure 7: The packet format of HPCC.

Theoretical properties of HPCC. For simple models of a sys-

tem with arbitrary network topology and with multiple bottleneck

links, we prove that HPCC has rapid convergence to a Pareto opti-

mal rate allocation, followed by a slower convergence to fairness.

Appendix A has a detailed analysis of HPCC’s properties.

4 IMPLEMENTATION
We implement a prototype of HPCC in commodity NICs with FPGA

programmability to realize the CC algorithm (§3.2) and commodity

switching ASICs with P4 programmability to realize a standard

INT feature
3
(§3.1). We also implemented DCQCN on the same

hardware platform for fair comparisons.

4.1 INT padding at switches
HPCC only relies on packets to share information across senders,

receivers, and switches. Figure 7 shows the packet format of the

INT padding after UDP header and before IB BTH (Base Transport

Header) as in RoCEv2 standard. The field nHop is the hop count

of the packet’s path. The field pathID is the XOR of all the switch

IDs (which are 12 bits) along the path. The sender sets nHop and

pathID to 0. Each switch along the path adds nHop by 1, and XORs

its own switch ID to the pathID. The sender uses pathID to judge

whether the path of the flow has been changed. If so, it throws away

the existing status records of the flow and builds up new records.

Each switch has an 8-byte field to record the status of the egress

port of the packet when the packet is emitted. B is a enum type

which indicates the speed type of the port. The timestamp (TS),
total bytes sent so far (txBytes , in units of 128 Bytes) and the queue

length (qLen, in units of 80 Bytes) are all standard INT information.

The overhead of the INT padding for HPCC is low. Inside a data

center, the path length is often no more than 5 hops, so the total

padding is at most 42 bytes, which is only 4.2% in a 1KB packet.

Our switch also has modules such as destination-based ECMP

routing, QoS, WRED, PFC, etc..

4.2 Congestion control at NICs
Figure 8 showsHPCC implementation on a commodity programmable

NIC. The NIC provides an FPGA chip which is connected to the

main memory with a vendor-provided PCIe module and the Ether-

net adapter with a vendor-provided MAC module. Sitting between

the PCIe and MAC modules, HPCC’s modules realize both sender

and receiver roles.

The Congestion Control (CC) module implements the sender

side CC algorithm. It receives ACK events which are generated from

3
INT only requires a tiny subset of P4 programmability. Our other non-P4 ASIC

vendors also provide the same INT features in their new releases.

Congestion Control Module
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Built-in FPGA Chip on NIC
Main Memory
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Figure 8: Overview of HPCC’s NIC implementation.

the RX pipeline, adjusts the sending window and rate, and stores

the new sending window and rate for the flow of the current ACK

in the flow scheduler via an Update event.
The flow scheduler paces flow rates with a credit-based mecha-

nism. Specifically, it scans through all the flows in a round-robin

manner and assigns credit to each flow proportional to its current

pacing rate. It also maintains the current sending window size and

unacknowledged packets for active flows. If a flow has accumulated

sufficient credits to send one packet and the flow’s sending window

permits, the flow scheduler invokes a PktSend event to TX pipe.

The TX pipe implements IB/UDP/IP stacks for running in Ro-

CEv2. It maintains the flow context for each of concurrent flows,

including 5-tuples, the packet sequence number (PSN), destination

QP (queue pair), etc. Once it receives the PktSend event with QP

ID from the flow scheduler, it generates the corresponding packet

and delivers to the MAC module.

The RX pipe parses the incoming packets from the MAC mod-

ule and generates multiple events to other HPCC modules. (1) On

receiving a data packet, the RX pipe extracts its flow context and in-

vokes a PktRecv event to the TX pipe to formulate a corresponding

ACK packet. If the packet is out-of-sequence (OOS), the TX pipe

sends a NAK instead. (2) On receiving an ACK packet, the RX pipe

extracts the network status from the packet and passes it to the CC

module via the flow scheduler. (3) On receiving a NAK, the RX pipe

notifies the TX pipe to start go-back-to-N retransmission. (4) On

receiving a control packet with an RDMA operation, the RX pipe

notifies the flow scheduler to create a flow with a new QP ID, or

remove an existing flow. Currently, HPCC supports two operations:

RDMA WRITE and RDMA READ. We leave the full support of IB

verbs as future work.

4.3 Performance optimization
We did many performance optimizations in our hardware imple-

mentation. Here are two examples:

Accelerating divisions in hardware. After receiving an ACK,

the CC module needs to recompute the window, which requires

divisions in Eqn (4). However, divisions are expensive operations

especially in FPGA. We design a lookup table to replace division

operations by applying the multiplication operation on the value of

1

n , where n is an integer. To reduce the table size while constraining

the estimation error, we choose storen values whose difference with
the previous stored one is larger than ϵ (i.e.,

1

nk+1
− 1

nk
≥ ϵ × 1

nk
).

As a result, we can speed up the division option in Eqn (4) by

about 8 times. The hardware memory overhead is negligible. In our
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current implementation, we merely use about 10KB to represent

{ 1n |1 ≤ n ≤ 2
22,n ∈ N}.

Supportingmany concurrent flows. The bottleneck to support-
ing a large number of concurrent flows is the speed of the clock

engine in the hardware. Because the flow scheduler uses round

robin over a fixed size array to schedule different flows, it can only

support up to 50 concurrent flows at line rate with a single engine.

To support more concurrent flows, we use multiple independent en-

gines to schedule multiple independent arrays of flows. The FPGA

we use in our prototype has six engines, which means we can sup-

port 300 concurrent flows per 25GE interface. We expect to be able

to support 9K flows in ASIC implementations given that the ASIC’s

clock is much faster (e.g. 0.2ns per tick) than our FPGA’s clock

(e.g. 5ns), which is sufficient in data centers.

4.4 Complexity and overhead
Our NIC implementation takes about 12000 lines of Verilog code

for the flow scheduler, RX/TX pipes, register profiles, and top flow

controls. The CC modules for HPCC and DCQCN have about 2000

and 800 lines of Verilog code respectively. The hardware resources

(e.g. CLB LUTs, CLB register, Block RAM, DSP, etc.) used by both

HPCC and DCQCN are less than 2% of the total in the FPGA.

We believeHPCC can be easily implemented in the next-generation

RoCE NICs. This is because HPCC conforms to the paradigm of

existing RoCE NICs, so it just needs simple logic changes, rather

than architectural changes. Specifically, it has a simple receiver

and three components at the sender: measurement, calculation, and

traffic enforcement, which are already in RoCE NICs, unlike some

other paradigms that are architecturally different, such as receiver-

driven or credit-based CC[14, 18, 22, 33]. The major changes are

incremental. We just need an INT parser at the measurement part

which is just another type of header parsing, and changes to the

calculation part are also simple as demonstrated in our prototype.

Our switch side implementation consists of about 300 lines of P4

code and 700 lines of configurations via Program-Dependent (PD)

APIs in the control plane. The regular modules (e.g. QoS, WRED,

etc.) are all standard modules used in today’s commodity switches.

The additional resources used to support INT function are small

over baseline switch.p4 [6] with 25% more stateful ALU usage and

a 5% increase in memory and Packet Header Vector resources.

Difficulty to implement TCP-like CC in hardware. From our

experience in implementation of HPCC and DCQCN and our con-

versations with NIC vendors, we found it is hard to implement

TCP-like CC algorithms which use sliding windows. The primary

reason is sliding windows should support retransmissions of arbi-

trary packet losses, so they needs random access to memory which

is complex to implement in the hardware even for a single flow. It

is even harder when the number of flows goes up to hundreds or

thousands. However, implementing a sending window as we did in

HPCC, which is just a sequential array per flow without random

memory access, is straightforward and effective.

5 PERFORMANCE EVALUATION
In this section, we use testbed experiments with our prototype

and large scale NS3 simulations [5] to evaluate the performance of

HPCC and compare to existing alternatives.

5.1 Evaluation setup

Network topologies The testbed topology mimics a small scale

RDMA PoD in our production. The testbed includes one Agg switch

and four ToRs (ToR1-ToR4) connected via four 100Gbps links. There

are 32 servers in total and each server has two 25Gbps NICs. 16

servers are connected to ToR1 and ToR2 via two uplinks, and the

other 16 servers are connected to ToR3 and ToR4. The base RTT is

5.4µs within a rack and 8.5µs cross racks.
The topology in the NS3 simulations is a FatTree [7]. There are

16 Core switches, 20 Agg switches, 20 ToRs and 320 servers (16 in

each rack), and each server has a single 100Gbps NIC connected

to a single ToR. The capacity of each link between Core and Agg

switches, Agg switches and ToRs are all 400Gbps. All links have

a 1µs propagation delay, which gives a 12µs maximum base RTT.

The switch buffer size is 32MB which is derived from real device

configurations. The whole network is a single RDMA domain.

Traffic loads We use widely accepted and public available data

center traffic traces, WebSearch [43] and FB_Hadoop [37] in both

testbed experiments and simulations. We adjust the flow generation

rates to set the average link loads to 30% and 50% respectively. We

also create some simple artificial traffic loads to evaluate the micro-

benchmarks of HPCC.

Alternative approaches We compare HPCC with DCQCN and

TIMELY [31], which are CC schemes designed for RDMA. Since

neither of them limits inflight bytes, we also try to improve them

by adding a sending window (same as we use for HPCC), and we

call the improved version “DCQCN+win” and “TIMELY+win”. We

also compare with DCTCP [8] which is a host-based TCP-like CC

for high throughput and low latency in data center networks. We

remove the slow start phase in DCTCP for fair comparisons.

Parameters For HPCC, we setWAI = 80bytes
4
,maxStaдe = 5,

and η = 95%
5
in Algorithm 1. We set T to 9µs for testbed and 13µs

for simulations, which are slightly greater than the maximum RTT

of the networks. For DCQCN, we use the parameters suggested by

a major NIC vendor; For TIMELY, we use the parameters suggested

in [31]. For DCQCN and DCTCP, we scale the ECN marking thresh-

old proportional to the link bandwidth (Bw). For DCQCN, we set

Kmin = 100KB × Bw
25Gbps and Kmax = 400KB × Bw

25Gbps according

to our experiences (no vendor suggestion available). For DCTCP,

we set Kmin = Kmax = 30KB × Bw
10Gbps according to [8]. We set

the dynamic PFC threshold so that the PFC is triggered when an

ingress queue consumes more than 11% of the free buffer.

Performance metrics We have five performance metrics. (i) FCT

slow down; (ii) Real-time bandwidth of individual flows; (iii) net-

work latency; (iv) PFC pause duration; (v) Size of in-network queues.

INT overhead For considering the impact of INT overhead on the

performance, we assume each packet in HPCC has an additional 42

bytes in the header. This is a worst-case assumption because a data

packet merely has 42 bytes INT meta-data at the last hop.

4
Calculated based on 100 concurrent flows under 100Gbps according to §3.3.

5
We triedmaxStaдe from 0 to 5, and η from 95% to 98%, all of which give similar

results. Here we show the most conservative setting.
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Figure 9: Comparing HPCC and DCQCN on testbed with four micro-benchmark traffic loads.

5.2 Testbed experiments
We run our prototype (§4) on the testbed. We compare HPCC with

DCQCN with both micro-benchmarks and realistic traffic loads.

Micro-benchmarks

HPCC has faster and better rate recovery Figure 9a and 9b illustrate

the behaviors of HPCC and DCQCN with Long-Short traffic. A long

flow sends at full line rate, and later a short flowwith 1MB size joins

sharing the same links as the long flow and leaves after a period of

time. HPCC recovers the rate of the long flow right after the short

flow ends, while DCQCN cannot recover to line rate even after 2

ms (>350 RTTs). HPCC ramps up quickly because its feedback does

not rely on the queue.

HPCC has faster and better congestion avoidance Figure 9c and 9d

show how HPCC and DCQCN react to congestion caused by Incast.
Seven senders start to send flows at the same time towards the

receiver of a long-running flow. HPCC quickly reacts after just one

round trip, so the queue drains quickly. With DCQCN, the queue

builds up to 550 KB due to two reasons: (1) it waits for the queue

build up for ECN, and (2) it does not limit the inflight bytes.

HPCC has lower network latency We keep sending mice flows (1KB

each) through a link that is saturated by two elephant flows, and

measure the mice flow latency and the buffer size. Figure 9e and

9f show HPCC keeps a near-zero queue and therefore the latency

of mice flows is close to 5.4µs, the base RTT. DCQCN keeps a

standing queue around the ECN marking threshold, so the latency

is consistently higher than 35µs.

HPCC has fairness Figure 9g and 9h show the fairness of HPCC

and DCQCN. 4 flows join a link one by one every second and leave

afterwards. HPCC provides good fairness even in a short time scale.

End-to-end performance We evaluate HPCC and DCQCN under

WebSearch, at 30% and 50% loads. We also run similar experiments

under FB_Hadoop, which show similar trends.

HPCC significantly reduces FCT for short flows HPCC and DCQCN

achieve similar FCT slowdowns in the median, but at 95th and 99th

percentile, HPCC achieves a much better FCT slowdown especially

for short flows (Figure 10a and 10c). For example, at 30% load, HPCC

reduces the 99th-percentile FCT slowdown from 11.2 down to 2.38

for flows shorter than 3KB, which is only 16.9µs. The gap is larger

with higher loads. For example, at 50% load, HPCC achieves a 95%

reduction on the 99th-percentile FCT slowdown, from 53.9 down

to 2.70, for the flows shorter than 3KB, which is only 19.2µs.

HPCC has steadily close-to-zero queues Figure 10b and 10d show

the CDF of queue lengths at switches, which provides more insight

into the achieved performance. In both cases, the median queue

size is 0, which explains the closeness of median FCT slow down.

However, HPCC keeps the ultra-low queue size even at the very

tail, thus achieving much lower FCTs for short flows. For example,

at 50% load, HPCC’s 95 and 99 percentile queue sizes are 19.7KB

and 22.9KB, whereas DCQCN’s sizes are 1.1MB and 2.1 MB. These

experiments confirm that HPCC is very effective at keeping the

queue near zero under realistic traffic patterns. As a result, there

is no packet loss and PFC is not necessary because the queue size

never reaches the PFC threshold.

5.3 Large-scale event-driven simulations
We verified the fidelity of simulation by performing the same exper-

iment as the testbed, which matches testbed results well. We then

use simulations to evaluate HPCC on a larger network topology

and higher line rates. Figure 11 shows the comparison of HPCC and

other CC schemes for FB_Hadoop traffic. To stress test with diverse

traffic patterns, we either add incast traffic to 30% load traffic or run

50% load traffic.We generate the incast traffic by randomly selecting

60 senders and one receiver, each sending 500KB. The incast traffic

load is 2% of the network capacity. We also tried various levels of

traffic load, incast sizes and incast ratios, as well as withWebSearch,
all of which show similar trends. Here are the key observations:

HPCC is beneficial to short flows. Since HPCC keeps near-zero

queues and resolves congestion quickly, it is beneficial to short

flows. All other CC schemes maintain standing queues, so they

cannot keep the latency low. Figure 11a and 11c show that for

the flows shorter than 120KB, HPCC achieves much lower FCTs

than all the other schemes at 95th percentile. This is beneficial to

applications with many short flows. This is the case for FB_Hadoop,
where 90% of the flows are shorter than 120KB.

Figure 11b and 11d show that on the tail, HPCC still achieves very

low round trip latency, under 20µs. For example, the 95-percentile
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Figure 10: FCT slow down and queue size of HPCC and DCQCN in testbed withWebSearch (30% and 50% avg. load).
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Figure 11: FCT slow down at 95-percentile, PFC and latency with FB_Hadoop (30% avg. load + 60-to-1 incast and 50% avg. load).

latency at 50% load is 19.8µs, which is less than 8µs extra latency
compared to the 12µs base RTT.

DCTCP outperformsDCQCN and TIMELY because it controls the

queue better as its window limits the inflight bytes. This may seem

to contradict previous statements about their relative performance[31,

43]. However, this discrepancy is mainly because they compare

hardware DCQCN/kernel-bypassing TIMELY with DCTCP based

on kernel[31, 43], which is known to have huge performance cost

and requires higher ECN threshold, while we only simulate the

effect of CC, excluding the cost introduced by the software nature

for a fair comparison. That said, HPCC reduces DCTCP’s latency

by more than 2 times, which is significant in data centers.

Throughput for long flows. Since HPCC explicitly controls the

bottleneck links to have a 5% bandwidth headroom, and the INT

header consumes extra bandwidth, the long flow has a higher slow-

down as shown in Figure 11a and 11c. The slowdown increases

with a higher load as the theory in [9] shows. The reason is that

the long flow slowdown is inversely proportional to the residual

capacity of the network. Other CC schemes aim to fully utilize the

bandwidth, so their residual capacity is (100%−load)which is 44.6%
at 50% load (including header and ACK); for HPCC, the residual

capacity is (95% − load × (1 + INT_overhead)) which is 36.1%. So

at 50% load the long flows are 1.24 times slower with HPCC than

with other schemes, which matches the FCT quite well. This is a

fundamental tradeoff we have to make in favor of short flows.

CC is the key to achieve stability and high performance. As
Figure 11b shows, large scale PFC pauses only appear when using

DCQCN and TIMELY, which confirms our insight that CC is the

key to the stability problem. Specifically, controlling the inflight

bytes is the key: just adding a sending window to DCQCN and

TIMELY reduces PFCs to almost zero.

We further show that a good CC scheme lessens the importance

of the flow control choices. We use PFC, go-back-N retransmis-

sion, and IRN [32]
6
, in combination with DCQCN and HPCC, and

6
When using go-back-N or IRN, where packet losses are not prevented by PFC, we

set the dynamic threshold for the egress queues with α = 1, which allows a single

congested egress port to consume up to half of the buffer.

�

��

���

����

�����

�
��
�
��
�
��
�
��
�
��
� �� �� ��

�
��
�� ��
�

��
�
��
��
��
�
�

���� ���� ������

���������
���������
���������

��������
��������
��������

(a) 30% Avg. Load + incast

�

��

�
��
�
��
�
��
�
��
�
��
� �� �� ��

�
��
�� ��

�

��
�
��
��
��
�
�

���� ���� ������

���������
���������
���������

��������
��������
��������

(b) 50% Avg. Load

Figure 12: FCT slow down at 95-percentile, with different
flow control choices. GBN stands for go-back-N.

perform the same experiment. Figure 12 shows that with HPCC,

different flow control schemes do not affect the performance. On

the other hand, since DCQCN controls the queue poorly, a better

flow control does improve its performance (it is worth noting that,

IRN adds a fixed sized window which also limits the inflight bytes,

and thus has improvement over the other two schemes). But even

with IRN, DCQCN still cannot match HPCC’s performance, which

confirms that CC is the key problem.

5.4 Design choices
We use a simple 16 to 1 incast scenario to show the design choices

of HPCC. The 16 senders and 1 receiver are connected via 100Gbps

links through a single switch, with 1µs link propagation delay.

HPCC achieves fast reaction without overreaction. We illus-

trate the benefit of HPCC’s strategy of combining per-ACK and

per-RTT reactions. Figure 13 shows the time series of aggregate

throughput and queue lengths. The queue builds up at the beginning

of all flows. Since the first few ACKs of each flow already see the

long queue, per-ACK reaction reacts to the queue quickly. However,

it incurs a significant overreaction, so the aggregate throughput

soon drops to almost 0 and then oscillates. Per-RTT reaction re-

acts to the queue slowly (only after all the ACKs in the first round

are received) and wastes the information brought by the first few

ACKs. As a result, the long queue persists for a long time. HPCC

introduces a reference rate that is updated every RTT and reacts

to every ACK based on the reference rate, so HPCC achieves fast

reaction without overreaction.
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Figure 14: Fairness and queue size withWAI .

TuningWAI for HPCC Figure 14a shows the first 10ms of the

throughput of different flows. Figure 14b shows the queue length

distribution, sampled every 1µs.
With 16 concurrent flows,WAI should not exceed 100 Gbps×4µs

×(1−0.95)/16 ≈ 150bytes (4µs is the base RTT), which is confirmed

by the result. Specifically, allWAI within 150bytes achieve a queue

length within 4 KB at 95-th percentile, whileWAI=300bytes has a

queue length of 13 KB at 95-th percentile (Figure 14b). Within the

150 bytes range, a higherWAI has better fairness. That said, since

we need to prepare for the worst case, we setWAI to sustain 100

concurrent flows (25 bytes in this case) that has good fairness.

It is worth noting that, HPCC’s performance degrades gracefully

with a highWAI . In the 300 bytes case, the queue length is still very

low in general: a 13KB queue just means 1 µs queueing delay.

6 RELATEDWORK
CC is an enduring research topic. Here we try to cover several

related works which are closely related.

RDMACC TIMELY [31] is a pioneer in RDMACC,which uses RTT

as a congestion signal. §5 shows that TIMELY suffers from incast

congestion because it gradually adjusts its rate. Furthermore, it can

converge to much longer queues than DCQCN [44]. iWarp [35] is

an alternative to RoCEv2. It puts the full TCP stack into hardware

NIC. As a result, iWarp suffers from well-known TCP problems in

data centers [40], such as high latency and vulnerability to incast.

Furthermore, due to the complexity to implement TCP stack in

hardware, iWarp NICs in general have a higher cost [19].

General CC for data center networks DCTCP [8] and TCP

Bolt [8] are two solutions implemented in host software which

suffers from high CPU overhead and high latency, while imple-

menting them in hardware raise problems similar to iWarp. In

addition, because they both use ECN similar to DCQCN, they can

hardly achieve small queues.

There are several proposals aiming to reduce latencywith changes

in both host software and switch hardware. pFabric [10] needs to

run sophisticated priority scheduling logics in switches and to

correctly prioritize traffic in hosts, which are hard to deploy [22];

HULL [9] advocates leaving a bandwidth headroom for ultra-low la-

tency in data centers, which is similar to HPCC. However, it requires

non-trivial implementations on switches for Phantom queues to get

feedback before link saturation; DeTail [42] needs a new switch ar-

chitecture for lossless fabric and performs per-packet adaptive load

balancing of packet routes in switches; HOMA [33] and NDP [22]

are receiver-driven, credit-based solutions, which is a big shift from

the state-of-the-art in practice, since they have complex receivers.

They, together with PIAS [11] also require priority queues, while

the number of priority queues is limited in switches, and production

networks often have to reserve them for application QoS. Different

from these solutions, one HPCC’s design goal is ease of imple-

mentation in hardware for offloading and deployability with the

start-of-the-art commodity NICs and switches. In addition, HPCC

works with a single priority queue.

There are also explicit CCs such as XCP [27] and RCP [16]. Be-

sides the key difference discussed in § 3.4, both of them require

switches to perform computation which is not widely available

in most commodity switches, but INT is widely available (§ 2.4).

Moreover, because HPCC allows line rate start, new flows can finish

faster than with slow start (XCP) and processor sharing (RCP). The

line rate start is allowed by our control on inflight bytes, which

drains queues rapidly. HPCC’s decoupling of utilization and fairness

is inspired by XCP.

The stability of CC algorithms has been investigated by several

authors using a variety of simplified models [12, 27, 28, 41]. We

draw two main insights from previous work. Firstly the speed of

adaptation to new observations of congestion should be scaled to

round-trip times in order to avoid destabilizing oscillations. Sec-

ondly, while feedback based on queue size is important for dealing

with sudden overloads, it is not particularly helpful for steady state

stability when queueing delays are short compared with round-trip

times (Appendix A.1). So we aim to keep link utilizations less than

100% to keep steady state queueing delays very short.

Flow controls for RDMA IRN [32] andMELO [30] are recent pro-

posals to reduce hardware-based selective packet re-transmissions

to prevent PFC pauses or even replace PFC. These efforts are or-

thogonal and complementary with HPCC. Different from the fixed

window used in IRN, the sending window in HPCC is proportional

to flow’s sending rate with better network stability.

7 CONCLUSION
We share our production experiences on the difficulties to operate

RDMA networks with the state-of-the-art high-speed CC. We pro-

pose HPCC as a next-generation CC for high-speed networks to

achieve ultra-low latency, high bandwidth, and stability simultane-

ously. HPCC achieves fast convergence, small queues, and fairness

by leveraging precise load information from INT. It has been im-

plemented with commodity programmable NICs and switches and

shows remarkable gains. We believe HPCC is a start towards CC

for future hyper-speed networks.

This work does not raise any ethical issues.
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APPENDIX

Appendices are supporting material that has not been peer re-

viewed.

A THE ANALYSIS OF HPCC’S THEORETICAL
PROPERTIES

A.1 Bounding queueing delays
To achieve ultra-low latency at the queues within the network we

control the windows of sources to keep the utilization of resources

around a target utilization of less than 100%, and each source paces

packet transmissions so that the time between two packets entering

the network is the reciprocal of the source’s pacing rate.

With a fixed number of long flows the natural model for a queue

at a resource is then a

∑
Di/D/1 queue, a deterministic server with

an arrival process that is a heterogeneous mix of periodic sources.

This model has been analyzed extensively [34, 36]. A superposition

of homogeneous streams yields the greatest buffer requirement for

a given load, and a Brownian bridge approximation is accurate in

heavy traffic. As an example of the numerical results, if the load is

95% of capacity and there are 50 sources then the mean number of

packets in the queues is about 3 and the probability there are more

than 20 packets in the queue is about 10
−9
. Even if the load is 100%

the mean number of packets in the queue is only about (πN /8)0.5

where N is the number of streams (and thus less than 5 with 50

sources; note that since sources are periodic, the queue remains

stable even at 100% load).
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In practice the arrival process at a resource is likely to be more

variable than a heterogeneous mix of periodic sources, even with

just a fixed number of long flows. Nonetheless we expect little

queueing unless the load on the queue exceeds 100%. Conversely, if

more than a small number of packets are queued then it is almost

certainly because the load on the resource exceeds its capacity.

The stability analysis of XCP and RCP [12] aims for 100% uti-

lization, and requires feedback based on queue size, as well as rate

mismatch, to shrink an otherwise persistent queue. This compli-

cates the stability analysis, which is available for only a single

congested resource. When the target utilization is less than 100%,

feedback based on queue size is not particularly helpful for steady

state stability; and the stability analysis for systems using just feed-

back based on rate mismatch can be simplified and extended to a

network with multiple resources and RTTs [28].

In HPCC, measurement of queue size is essential for dealing

rapidly with transient overloads. New sources are allowed to start

transmitting at line rate (to allow short flows to finish quickly), and

this may cause queue lengths to grow rapidly especially for incasts.

The interaction of window limits with the queueing term qlen in

the algorithm is designed to drain queues rapidly (Appendix A.4).

A.2 Fast convergence of utilization
Next we consider how quickly loads on the resources can be brought

back under control following a perturbation (perhaps caused by a

new source or sources starting).

We begin with a very simple discrete time model, where sources

all share the same RTT and rates at sources are updated syn-

chronously once per RTT. First note that if there is a single bottle-

neck resource then we could achieve the target utilization (η) in
one RTT with the update R(t +RTT ) = R(t)(Utarдet /U )whereU is

the observed utilization (it is simpler to work with rates rather than

windows in the analysis since rates and capacity constraints have

the same units and fairness is traditionally defined with respect to

rates).

Now suppose there are resources i = 1, 2, · · · , I and paths j =
1, 2, · · · , J . Let A be the incidence matrix defined by Ai j = 1 if

resource i is used by path j andAi j = 0 otherwise; assume each path

uses at least one resource, so that no column ofA is identically zero.

Let Ci > 0 be the (target) capacity of resource i , for i = 1, 2, · · · , I ,
and define the vector C = (Ci , i = 1, 2, · · · , I ). A rate allocation is

a vector R = (Rj , j = 1, 2, · · · , J ). Let Yi be the load on resource i
and let Y = (Yi , i = 1, 2, · · · , I ). From the definition of the matrix A
we have that Y = AR. Say that R is feasible if the vector inequality
Y ≤ C is satisfied, so that the load on each resource is not greater

than the (target) capacity of the resource.

Suppose the initial state R(0) has Rj (0) > 0 for j = 1, 2, · · · , J
and suppose rates are updated in discrete time by the recursions

Y (n) = AR(n) (5)

Rj (n + 1) =
Rj (n)

maxi {Yi (n)Ai j /Ci }
. (6)

Lemma
(i) Y (n) ≤ C for n = 1, 2, · · · ; hence after one step rates are all

feasible.

(ii) R(n + 1) ≥ R(n) for n = 1, 2, · · · ; hence after the first step

rates are either constant or increase.

(iii) R(n) = R for n = I , I +1, · · · where R is Pareto optimal; hence

after at most I steps R(n) is constant and is then Pareto optimal.

Proof

Yi (n + 1) =
∑
j
Ai j

Rj (n)
maxk {Yk (n)Ak j /Ck }

≤
∑
j
Ai j

Rj (n)
{Yi (n)/Ci }

= Ci ,

and so rates are feasible for n ≥ 1. Also max{Yi (n)/Ci } ≤ 1 for

n = 1, 2, · · · , and hence after the first step rates are non-decreasing.

Furthermore if k = argmax{Yi (0)/Ci } then after one time step

Yk (1) = Ck - the resource k is bottlenecked. Thereafter the rates on
paths through the bottlenecked resource k remain unchanged. We

can remove resource k from the network, together with all paths

through it. At each subsequent step at least one more resource

becomes bottlenecked and can be removed. After at most I steps
either all resources are bottlenecked or all paths have been removed.

At the resulting rate allocation R all paths pass through at least

one bottleneck, and so no path can have its rate increased without

decreasing the rate of another path: hence the rate allocation R is

Pareto optimal.

The recursions (5)-(6) thus give convergence to feasibility after

just one RTT and fast convergence to a Pareto optimal allocation

R(n) = R. However the allocation will not in general be fair, and

indeed R will in general depend on the initial state R(0). Next we
consider how an additive increase term encourages convergence to

a form of fairness.

A.3 Additive increase and fairness
Consider a network with multiple resources where RTTs vary and

updates are asynchronous. For a given source let Ui be the utiliza-
tion at resource i observed by the source and let U = maxi {Ui }
where the maximum is over the resources on the path associated

with the source. Suppose the rate at the source is updated once per

RTT by

R(t + RTT ) = R(t )
Utarдet

U (t + RTT )
+ a

where a > 0 is a small additive increase. (In this sub-section we use

R for the rate from a typical source, rather than the vector giving

the rates over all sources.) Then at an equilibrium point (where

U (t) = U and R(t) = R do not vary with time for any of the sources)

we have that

U = max

i
{Ui }, R = a

(
1 −

Utarдet
U

)−1
.

Let U(1) be the equilibrium utilization at the most congested

bottleneck (i.e. the resource for whichUi is highest), and let R(1) be
the equilibrium rate on paths through this bottleneck. LetU(2) be

the equilibrium utilization at the next most congested bottleneck,

and let R(2) be the equilibrium rate on paths which pass through

this as their most congested bottleneck. Similarly defineU(i),R(i)
for i = 3, 4, · · · . Thus R(1) ≤ R(2) ≤ · · · . Then, by recursion of the

above analysis,

R(i ) = a
(
1 −

Utarдet
U(i )

)−1
.

Thus

U(i ) = Utarдet

(
1 −

a
R(i )

)−1
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confirming that U(1) ≥ U(2) ≥ · · · . Observe that the equilibrium

utilizations are aboveUtarдet by an amount that increases with a.
The highest utilization U(1) will be less than 100% if a < R(1)(1 −
Utarдet ). For example, ifUtarдet = 95% then a should be less than

5% of the flow rate R(1).
There is a trade-off in the choice of the additive increase a:

smaller values of a will produce smaller fluctuations about the equi-

librium, but at the cost of slower convergence to the equilbrium. If

a is small enough the rates will be approximately max-min fair.

Next consider the impact of stochastic fluctuations in the ob-

served utilizations and hence in the rates. The distribution ofmaxi {Ui }
will depend mainly on the most congested link but will be biased

upwards by other congested links on the path. The rates achieved

along different paths will be biased away from max-min fairness

towards proportional fairness. This is not of itself a major prob-

lem: relative to max-min fairness, rate allocations under propor-

tional fairness give an improvement of utilization across multiple

resources (since the absolute priority max-min fairness gives to

smaller flows can cause starvation at some resources [13]).

With more registers at sources we can exercise more control over

the form of fairness achieved, as we now briefly describe. Suppose

a source maintains a distinct register Ri for each resource on its

path, updated by

Ri (t + RTT ) = Ri (t )
Utarдet

Ui (t + RTT )
+ a

where Ui (t + RTT ) is the utilization at resource i observed by the

source over the preceding RTT and again a > 0 is a small additive

increase. Update the rate R of the source by

R =

(∑
i
R−α
i

)−1/α
(7)

where α ∈ (0,∞) is a fixed parameter.

At an equilibrium point

Ri = a
(
1 −

Utarдet
Ui

)−1
and R is given by equation (7). Here we interpret Ri as the rate

which would be allocated to a source whose path went through just

one resource, resource i , and then rate R is the α-fair rate alloca-
tion. Note that as α → ∞ the expression (7) approaches mini {Ri }
corresponding to max-min fairness. The case α = 1 corresponds to

proportional fairness. The case α → 0 approaches the rate alloca-

tion which maximizes the sum of the rates over all sources [29].

A.4 Window limits
Since the earliest days of packet-switching the importance of con-

trolling the number of inflight packets traversing the network has

been understood [15] and congestion control in TCP makes explicit

use of window flow control [24]. In our algorithm we also limit the

number of inflight packets a source has. We illustrate the benefit in

this sub-section.

We suppose that a source limits its transmissions so that at any

time the source has no more packets unacknowledged than its

window limit. If an update indicates congestion, then the window

limit decreases, so the source may be restricted from transmitting

if acknowledgements are slow in returning to the source.

As an example, suppose a new source starts transmitting at line

rate. Then it can continue to do so for the first RTT: if after this

acknowledgements start returning at line rate then the window

limit will not restrict the source. So if a new source transmitting at

line rate does not observe congestion, then it can continue at line

rate.

As a second example, suppose a set of 64 new sources begin

transmitting together, each at line rate, and that the paths used by

the sources converge on an intree to a single root queue which was

already busy at its target utilization. Further suppose the 64 new

sources continue to transmit at line rate for one base RTT - their

initial burst. This is a very stressful case: the queueing time at the

root of the intree will build up to nearly 64 times the base RTT of the

new sources by the time the last packets of the initial bursts arrive at

the root queue. But after the first acknowledgements start arriving

at the new sources their windows will decrease rapidly, since these

acknowledgements carry early news of the queue building up at

the root queue. Consequently very few packets will be sent by the

source following its initial burst until the receipt of the last packet

from its initial burst, by which time it will decrease its window to

about 1/65 of its initial window (note that the RTT time of the last

packet from the initial burst is about 65 times the base RTT, and

that this packet has observed approximately the peak queue at the

root of the intree). Thus the window limits on sources allows the

queue at the root of the intree to empty as fast as is possible, and the

queueing termqlen in the algorithm forces new sources to moderate

their windows following receipt of the delayed acknowledgements

from the initial burst. The rates of the new sources and the rates of

the existing flows through the root queue will not yet be fair - that

will take longer, as a consequence of the additive increase term in

the algorithm. But utilization has been brought under control as

quickly as possible in a very stressful case without triggering PFC.
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